A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid. | LitMetric

Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid.

Appl Microbiol Biotechnol

Institute for Biochemistry and Technology of Lipids, H.P. Kaufmann Institute, Federal Centre for Cereal, Potato and Lipid Research, Münster, Germany.

Published: April 1999

The substrate selectivity of numerous commercially available lipases from microorganisms, plants and animal tissue towards 9-octadecenoic acids with respect to the cis/trans configuration of the C=C double bond was examined by the esterification of cis- and trans-9-octadecanoic acid (oleic and elaidic acid respectively) with n-butanol in n-hexane. A great number of lipases studied, e.g. those from Pseudomonas sp., porcine pancreas or Carica papaya, were unable to discriminate between the isomeric 9-octadecenoic acids. However, lipases from Candida cylindracea and Mucor miehei catalysed the esterification of oleic acid 3-4 times faster than the corresponding reaction of elaidic acid and therefore have a high preference for the cis isomer. Of all biocatalysts examined, only recombinant lipases from Candida antarctica favoured elaidic acid as substrate. While the preference of Candida antarctica lipase B for the trans isomer was quite low, Candida antarctica lipase A had an extraordinary substrate selectivity and its immobilized enzyme preparation [Chirazyme L-5 (3) from Boehringer] esterified elaidic acid about 15 times faster than oleic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002530051420DOI Listing

Publication Analysis

Top Keywords

elaidic acid
16
substrate selectivity
12
candida antarctica
12
esterification cis-
8
acid
8
acid substrate
8
9-octadecenoic acids
8
lipases candida
8
oleic acid
8
times faster
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!