Murine phospholipid hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping.

Mamm Genome

Division of Cardiology, Box 356422, University of Washington, 1959 N. E. Pacific St. Seattle, Washington 98195, USA.

Published: June 1999

Phospholipid hydroperoxide glutathione peroxidase (PHGPx), also known as glutathione peroxidase 4 (GPX4), is a 19-kDa, monomeric enzyme that protects cells from lipid peroxide-mediated damage by catalyzing the reduction of lipid peroxides. PHGPx is synthesized in two forms, as a 194-amino acid peptide that predominates in gonadal tissue and localizes to mitochondria, and as a 170-amino acid protein that predominates in most somatic tissues and localizes to the cytoplasm. With the rapid amplification of cDNA ends (RACE) procedure, an 876-bp PHGPx cDNA was amplified from mouse testis, and a 767-bp PHGPx cDNA was amplified from mouse heart. The cDNA sequences were identical except that the testis cDNA contained an additional 109 bp at its 5' end. With a partial cDNA with complete homology to both the testis and myocardial PHGPx cDNAs, the murine tissue distribution of PHGPx mRNA expression was determined by Northern blotting. Highest level of PHGPx expression was found in the testis, followed by the kidney, heart and skeletal muscle, liver, brain, lung, and spleen. Northern blotting performed with a cDNA specific for the longer PHGPx transcript demonstrated that this longer PHGPx transcript was present only in the testis. A 1.4-kb PHGPx genomic fragment was amplified from murine kidney DNA and used to map the PHGPx gene by linkage analysis of restriction fragment length variants (RFLVs). The murine PHGPx gene (Gpx4) was mapped to a region of murine Chromosome (Chr) 10, located 43 cM from the centromere, that is syntenic with the human locus, which is located at the terminus of the short arm of human Chr 19. This information may be valuable in characterizing the role of PHGPx in modulating susceptibility to lipid peroxide-mediated injury in inbred murine strains and for targeted disruption of the gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s003359901053DOI Listing

Publication Analysis

Top Keywords

phgpx
13
glutathione peroxidase
12
phospholipid hydroperoxide
8
hydroperoxide glutathione
8
cdna
8
lipid peroxide-mediated
8
phgpx cdna
8
cdna amplified
8
amplified mouse
8
northern blotting
8

Similar Publications

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.

Ferroptosis, a unique form of iron-dependent cell death triggered by lipid peroxidation accumulation, holds great promise for cancer therapy. Despite the crucial role of GPX4 in regulating ferroptosis, our understanding of GPX4 protein regulation remains limited. Through FACS-based genome-wide CRISPR screening, we identified MALT1 as a regulator of GPX4 protein.

View Article and Find Full Text PDF

Introduction: Depression is a prevalent and significant psychological consequence of traumatic brain injury (TBI). Ferroptosis, an iron-dependent form of regulated cell death, exacerbates the neurological damage associated with TBI. This study investigates whether nicorandil, a potassium channel opener with nitrate-like properties known for its antioxidative and neuroprotective effects, can mitigate depression-like behaviors following TBI by modulating ferroptosis.

View Article and Find Full Text PDF

[FER-1 inhibits methylglyoxal-induced ferroptosis in mouse alveolar macrophages ].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, China.

Objectives: To investigate the inhibitory effect of FER-1 on methylglyoxal-induced ferroptosis in cultured mouse alveolar macrophages.

Methods: MH-S cells derived from mouse alveolar macrophages treated with 90 μg/mL methylglyoxal, 10 μmol/mL FER-1MG+FER-1, or both were examined for intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and ferrous ion (Fe) levels and changes in mitochondrial membrane potential. Western blotting was performed to detect the protein expression levels of glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthase 4 (ACSL4).

View Article and Find Full Text PDF

Background: Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, arises from bone-forming mesenchymal cells. Despite advancements in surgical resection and neoadjuvant chemotherapy (cisplatin, doxorubicin, and methotrexate), chemotherapy resistance remains a significant challenge, leading to poor survival rates in patients with metastatic or recurrent OS.

Methods: In this study, we focused on the role of OTULIN, a key linear deubiquitinating enzyme, in OS chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!