Although studies have suggested that exposure to cigarette smoke (CS) may be associated with the development of atopy, the mechanisms underlying this are not clearly understood. It has been suggested that CS impairs the barrier function of the airway epithelium, leading to increased access of allergens such as those of the house dust mite (HDM) Dermatophagoides pteronyssinus (Der p) to antigen-presenting cells, with subsequent allergic sensitization. In order to test this hypothesis, we established primary explant cultures of human bronchial epithelial cells (HBEC) in cell culture inserts, and exposed these for 20 min, 1 h, 3 h, and 6 h to CS or air in the absence or presence of 300 ng/ml Der p, and then further incubated the cultures over a period of 24 h. The HBEC cultures were assessed for changes in permeability as measured by changes in: (1) electrical resistance (ER); and (2) passage of 14C-labeled bovine serum albumin (14C-BSA) and Der p allergens across the HBEC cultures. We also assessed the effects of protease inhibitors and the antioxidant glutathione (GSH) in this experimental system. Damage to HBEC cultures was assessed by the release of [51Cr]sodium chromate from prelabeled cells, and by release of lactate dehydrogenase (LDH). Twenty minutes of exposure to CS as compared with exposure to air did not significantly alter either the ER or passage of 14C-BSA across the HBEC cultures. In contrast, incubation with Der p led to a significant increase in the permeability of HBEC cultures, an effect that was enhanced by exposure to CS but was abrogated by the specific protease inhibitors and GSH. Passage of Der p was also increased by exposure to CS. Exposure of HBEC cultures to CS led to a significant release of 51Cr and LDH from these cells as compared with cells exposed to air. This effect was augmented further when HBEC cultures were incubated with Der p. Exposure of HBEC cultures for 1 h, 3 h, and 6 h to CS led to a markedly significant dose- and time-dependent increase in the permeability of these cells. These results suggest that exposure to CS significantly enhances Der p-induced decreases in electrical resistance and the increased passage across HBEC cultures of 14C-BSA and of the Der p allergen itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/ajrcmb.20.6.3226 | DOI Listing |
Mol Microbiol
December 2024
Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
Malaria remains a significant global health problem, mainly due to Plasmodium falciparum, which is responsible for most fatal infections. Infected red blood cells (iRBCs) evade spleen clearance by adhering to endothelial cells (ECs), triggering capillary blockage, inflammation, endothelial dysfunction and altered vascular permeability, prompting an endothelial transcriptional response. The iRBC/HBEC-5i model, where iRBCs present IT4var04 (VAR2CSA) on their surface, was used to analyze the effects of iRBC binding on ECs at different temperature (37°C vs.
View Article and Find Full Text PDFSci Rep
December 2024
Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA.
Impaired mucociliary transport is a distinguishing sign of cystic fibrosis, but current methods of evaluation are invasive or expose young patients to ionizing radiation. Contrast-enhanced ultrasound imaging may provide a feasible alternative. We formulated a cationic microbubble ultrasound contrast agent, to optimize adhesion to the respiratory mucus layer when inhaled.
View Article and Find Full Text PDFEur Respir J
November 2024
Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
Rationale And Objective: Cystic fibrosis (CF) is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators offer significant improvements, but approximately 10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.
View Article and Find Full Text PDFJ Control Release
September 2024
Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America. Electronic address:
Front Toxicol
April 2024
Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!