Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-58456-5_4DOI Listing

Publication Analysis

Top Keywords

role platelet-derived
4
platelet-derived growth
4
growth factors
4
factors angiogenesis
4
angiogenesis alveogenesis
4
role
1
growth
1
factors
1
angiogenesis
1
alveogenesis
1

Similar Publications

Dehydrocorydaline maintains the vascular smooth muscle cell contractile phenotype by upregulating Spta1.

Acta Pharmacol Sin

January 2025

The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model.

View Article and Find Full Text PDF

Diabetic retinopathy is a major ocular complication associated with diabetes mellitus. Pericyte loss is a hallmark of diabetic retinopathy. The platelet-derived growth factor (PDGF)-B-PDGF receptor-β (PDGFRβ) signaling pathway plays an important role in the proliferation and migration of pericytes.

View Article and Find Full Text PDF

Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases.

Expert Opin Ther Targets

January 2025

Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.

Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.

Areas Covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.

View Article and Find Full Text PDF

Complex Pattern of Platelet Activation/Reactivity After SARS-CoV-2 Infection.

Int J Mol Sci

December 2024

Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.

COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to inflammatory and prothrombotic factors released from blood and vessel cells following infection. The existing literature does not provide clear-cut answers, as the results determining platelet status vary according to methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!