Lipopolysaccharide (LPS) is the major mediator of gram-negative septic shock. Molecules that bind LPS and neutralize its toxic effects could have important clinical applications. We showed that serum amyloid P component (SAP) neutralizes LPS. A SAP-derived peptide, consisting of amino acids 27 to 39, inhibited LPS-mediated effects in the presence of human blood. In this study, we used a pepscan of overlapping 15-mer peptides and distinguished two additional LPS-binding regions within the SAP molecule, identified in the regions spanning amino acids 61 to 75 and 186 to 200. The corresponding SAP-derived peptides, pep61-75 and pep186-200, inhibited the binding of fluorescein isothiocyanate-labeled LPS to monocytes as efficiently as a bactericidal/permeability-increasing protein (BPI)-derived 15-mer peptide comprising amino acids 85 to 99. The same SAP-derived peptides very potently inhibited LPS-induced priming of phagocytes in human blood. Also, SAP-derived pep186-200 caused a prolonged survival of actinomycin D-sensitized mice treated with LPS to induce septic shock, indicating a potential use of this peptide in the defense against serious gram-negative sepsis in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC96583PMC
http://dx.doi.org/10.1128/IAI.67.6.2790-2796.1999DOI Listing

Publication Analysis

Top Keywords

amino acids
12
serum amyloid
8
amyloid component
8
septic shock
8
human blood
8
sap-derived peptides
8
lps
6
lipopolysaccharide lps-binding
4
lps-binding synthetic
4
peptides
4

Similar Publications

The enantioselective synthesis of 1,4-dicarbonyl compounds continues to pose a significant challenge in organic synthesis, and a catalytic process which generates two adjacent stereogenic centers with full stereochemical control is lacking until now. The 1,4-relationship of the functional groups requires an Umpolung strategy as one of the α-carbonyl positions has to be inverted into an electrophilic center to react with a normal enolate. We report herein the highly enantio- and diastereoselective addition of silyl ketene acetals toward electrophilic 1-azaallyl cations to furnish chiral 4-hydrazonoesters, which are masked 1,4-dicarbonyl compounds.

View Article and Find Full Text PDF

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.

View Article and Find Full Text PDF

Introduction: The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker () by evaluating the nutrient composition and osteogenic activity of its bones. We prepared bone peptides (MMBP) and analyzed their osteogenic potential.

Methods: We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model.

View Article and Find Full Text PDF

Discovery of Rezatapopt (PC14586), a First-in-Class, Small-Molecule Reactivator of p53 Y220C Mutant in Development.

ACS Med Chem Lett

January 2025

Discovery Biology, PMV Pharmaceuticals, Inc., 400 Alexander Park Drive, Suite 301, Princeton, New Jersey 08540, United States.

p53 is a potent transcription factor that is crucial in regulating cellular responses to stress. Mutations in the gene are found in >50% of human cancers, predominantly occurring in the DNA-binding domain (amino acids 94-292). The Y220C mutation accounts for 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!