Nucleosides and nucleoside analogs are actively transported in the human kidney. With the recent cloning of a purine-selective, Na+-dependent, nucleoside transporter (hSPNT1, also termed hCNT2) from human kidney, it is now possible to study the interaction of nucleosides and nucleoside analogs with this transport protein and gain a more detailed knowledge of the underlying mechanisms of nucleoside transport in the human kidney. In this study we examined the substrate selectivity of hSPNT1 for nucleosides and nucleoside analogs. We determined that the naturally occurring nucleosides adenosine, inosine, and uridine are substrates for this carrier, whereas thymidine is not. The nucleoside analogs (0.5 mM) 2', 3'-dideoxyadenosine; 2',3'-dideoxyinosine; and 2-chloro-2'deoxyadenosine (2CdA), significantly inhibited the uptake of [3H]inosine in HeLa cells transiently transfected with hSPNT1. However, there was no significant Na+-dependent uptake of [3H]2', 3'-dideoxyinosine or [3H]2CdA in the transfected cells, suggesting that these nucleoside analogs are not permeants of hSPNT1. Interestingly, 2CdA was considerably less potent in inhibiting [3H]inosine uptake in HeLa cells expressing hSPNT1 than in cells expressing the rat homolog rSPNT (IC50 = 371 microM versus 13.8 microM), suggesting that there may be notable species differences in the kinetic interactions of some nucleoside analogs with purine- selective nucleoside transporters.
Download full-text PDF |
Source |
---|
J Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFSci Rep
January 2025
Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea.
The recent clinical outcomes of multi-regimen chemotherapy included prolonged survival and a high rate of conversion to surgery in Asian patients with advanced biliary tract cancer. The ability of single-operator cholangioscopy (SOC) to detect and stage extrahepatic cholangiocarcinoma (CCC) in intraductal lesions is becoming more important in determining the extent of surgery. The aim of this study was to evaluate the role of SOC in surgical planning for extrahepatic CCC.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.
We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.
Mikrobiyol Bul
January 2025
Kocaeli Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Kocaeli.
Son yıllarda pandemi nedeniyle virüslerin tanı ve tedavisine yönelik terapötik yöntemlerin geliştirilmesi ve antivirallerin test edilmesi amacıyla çok sayıda in vitro çalışma yapılmaktadır. Literatürde SARS-CoV-2'nin modellenebilmesi için HCoV-229E'nin kullanımının güvenli ve yeterli olup olmadığını inceleyen çalışmalar sınırlıdır. Bu sebeple bu çalışmada, BSL-2 şartlarında gerçekleştirilebilen HCoV-229E kültürü ve kantitasyon çalışmalarının, BSL-3 şartları gerektiren SARS-CoV-2 deneylerinde bir ön çalışma modeli olup olamayacağının antiviral etkinlik analizleri üzerinden araştırılması amaçlanmıştır.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!