Potent neuroprotective and antioxidant activity of apomorphine in MPTP and 6-hydroxydopamine induced neurotoxicity.

J Neural Transm Suppl

Technion-Faculty of Medicine, Eve Topf, Haifa, Israel.

Published: August 1999

Apomorphine is a potent radical scavenger and iron chelator. In vitro apomorphine acts as a potent iron chelator and radical scavenger with IC50 of 0.3 microM for iron (2.5 microM) induced lipid peroxidation in rat brain mitochondrial preparation, and it inhibits mice striatal MAO-A and MAO-B activities with IC50 values of 93 microM and 241 microM. Apomorphine (1-10 microM) protects rat pheochromocytoma (PC12) cells from 6-hydroxydopamine (150 microM) and H2O2 (0.6 mM) induced cytotoxicity and cell death. The neuroprotective property of (R)-apomorphine, a dopamine D1-D2 receptor agonist, has been studied in the MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease. (R)-apomorphine (5-10 mg/kg, s.c.) pretreatment in C57BL mice, protects against MPTP (24 mg/kg, i.p.) induced loss of nigro-striatal dopamine neurons, as indicated by striatal dopamine content, tyrosine hydroxylase content and tyrosine hydroxylase activity. It is suggested that the neuroprotective effect of (R)-apomorphine against MPTP neurotoxicity derives from its radical scavenging and MAO inhibitory actions and not from its agonistic activity, since the mechanism of MPTP dopaminergic neurotoxicity involves the generation of oxygen radical species induced-oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-7091-6369-6_6DOI Listing

Publication Analysis

Top Keywords

radical scavenger
8
iron chelator
8
content tyrosine
8
tyrosine hydroxylase
8
microm
6
mptp
5
potent neuroprotective
4
neuroprotective antioxidant
4
antioxidant activity
4
apomorphine
4

Similar Publications

A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) poses a significant healthcare challenge due to the limited effects of chemotherapeutic drugs. Natural products have gained widespread attention in cancer research according to their promising anti-cancer effects with minimal adverse side effects. This study explored the potential of Tacca chantrieri (TC), a plant rich in bioactive compounds, as a therapeutic agent for CCA.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.

View Article and Find Full Text PDF

An endophytic actinomycetes, , was -isolated from the leaves of Hook. et Arn. Five compounds were separated from the ethyl acetate extract of the fermentation broth of endophytic actinomycetes, and their structures were confirmed by utilising methods such as nuclear magnetic resonance, mass spectrometry, and literature references.

View Article and Find Full Text PDF

Molecular Mechanism for the Unprecedented Metal-Independent Hydroxyl Radical Production from Thioureas and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.

The most well-known hydroxyl radical (OH)-generating system is the classic iron-mediated Fenton reaction. Thiourea has been considered as an efficient OH scavenger and is frequently used to study the role of OH in various biochemical and medical research studies. Here we found that the highly reactive OH can be produced from thiourea and HO through a metal-independent pathway, as measured by electron spin resonance (ESR) secondary radical spin-trapping and fluorescent methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!