Background: Prostate cancer is presently diagnosed by transrectal ultrasound (TRUS)-guided sextant needle biopsy. While echo texture of the tissue can prompt localization of tumor, it is presently imprecise. From 50-75% of men biopsied, based on an abnormal digital rectal examination (DRE) or elevated prostate-specific antigen (PSA) level, have negative biopsy results. Improvements in tumor localization during TRUS-guided prostate biopsy are greatly needed. Bioimpedance is an electrical property of biologic tissue. Electric current is limited in living tissue by highly insulating cell membranes; however, different tissue architecture such as cancer may impede current differently and allow detection of differences between normal and abnormal or malignant prostate tissue. Our goal was to assess the utility of bioimpedance measurements in differentiating tumor from normal prostatic tissue in an ex vivo model.
Methods: Bioimpedance was measured in six ex vivo prostates, which were removed for clinically localized prostate cancer. Two bioimpedance needles, 1 mm apart, were inserted 3 mm into the posterior surface of the prostate an average of 16 times per gland. Frequencies ranging from 100 kHz-4 MHz were used to obtain 594 bioimpedance measurements from the six glands. These measurements were then correlated with histology to determine the presence or absence of prostate cancer.
Results: Prostate cancer was found to have a higher impedance, of 932+/-170 ohms, compared to areas of no cancer within the same prostate, 751+/-151 ohms, P < 0.0001, at 2 MHz. This phenomenon was observed across all frequencies tested.
Conclusions: This study demonstrates for the first time application of bioimpedance to distinguish areas of prostate cancer from areas of normal prostate. This technology may improve identification and localization of cancer within the prostate. Moreover, bioimpedance can potentially guide needle placement during prostate biopsy and thus improve sampling of tumors. Currently, our ex vivo model is limited by variables such as temperature and lack of blood flow. Further studies in an in vivo model will be needed to assess their effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1097-0045(19990515)39:3<213::aid-pros10>3.0.co;2-8 | DOI Listing |
J Transl Med
January 2025
Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.
Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.
View Article and Find Full Text PDFMol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.
Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.
Eur J Drug Metab Pharmacokinet
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!