On the role of magnesium ions in RNA stability.

Biopolymers

Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.

Published: June 1999

Divalent cations, like magnesium, are crucial for the structural integrity and biological activity of RNA. In this article, we present a picture of how magnesium stabilizes a particular folded form of RNA. The overall stabilization of RNA by Mg2+ is given by the free energy of transferring RNA from a reference univalent salt solution to a mixed salt solution. This term has favorable energetic contributions from two distinct modes of binding: diffuse binding and site binding. In diffuse binding, fully hydrated Mg ions interact with the RNA via nonspecific long-range electrostatic interactions. In site binding, dehydrated Mg2+ interacts with anionic ligands specifically arranged by the RNA fold to act as coordinating ligands for the mental ion. Each of these modes has a strong coulombic contribution to binding; however, site binding is also characterized by substantial changes in ion solvation and other nonelectrostatic contributions. We will show how these energetic differences can be exploited to experimentally distinguish between these two classes of ions using analyses of binding polynomials. We survey a number of specific systems in which Mg(2+)-RNA interactions have been studied. In well-characterized systems such as certain tRNAs and some rRNA fragments these studies show that site-bound ions can play an important role in RNA stability. However, the crucial role of diffusely bound ions is also evident. We emphasize that diffuse binding can only be described rigorously by a model that accounts for long-range electrostatic forces. To fully understand the role of magnesium ions in RNA stability, theoretical models describing electrostatic forces in systems with complicated structures must be developed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.0.CO;2-YDOI Listing

Publication Analysis

Top Keywords

rna stability
12
diffuse binding
12
site binding
12
rna
9
binding
9
role magnesium
8
magnesium ions
8
ions rna
8
salt solution
8
binding diffuse
8

Similar Publications

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

NAT10 drives endometriosis progression through acetylation and stabilization of TGFB1 mRNA.

Mol Cell Endocrinol

December 2024

International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Speciality, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

Endometriosis, a gynecological disorder marked by pelvic pain and infertility, has its pathogenesis and pathophysiology significantly influenced by epigenetics, as these factors have been well characterized. However, the role of RNA-mediated epigenetic regulation in endometriosis remains to be elucidated. In our study, we found that N4-acetylcytidine (acC) RNA modification and N-acetyltransferase 10 (NAT10) were significantly upregulated in endometrial lesions compared to eutopic endometrium.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Objective:  Septic acute lung injury (ALI) is a common complication of sepsis with high morbidity and mortality but lacks specific treatment. This study aimed to elucidate the role of circular RNA TLK1 (circTLK1) in neonatal septic ALI.

Study Design:  Murine cecal slurry was used to induce neonatal sepsis-induced ALI model in vivo.

View Article and Find Full Text PDF

Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy.

Biomater Adv

December 2024

Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:

MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!