Asthma is among the most frequent chronic diseases in childhood. Although numerous environmental risk factors have already been identified, the basis for familial occurrence of asthma remains unclear. Previous genome screens for atopy in British/Australian families and for asthma in different American populations showed inconsistent results. We report a sib pair study of a sample of 97 families, including 415 persons and 156 sib pairs. Following an extensive clinical evaluation, all participants were genotyped for 351 polymorphic dinucleotide markers. Linkage analysis for asthma identified four chromosomal regions that could to be linked to asthma: chromosome 2 (at marker D2S2298, P = 0.007), chromosome 6 (around D6S291, lowest P = 0.008), chromosome 9 (proximal to D9S1784, P = 0.007), and chromosome 12 (D12S351, P = 0.010). These linkage regions could be reproduced for all loci by analysis of total or specific immunoglobulin E (minimum P values at these regions were 0. 003, 0.001, 0.010, and 0.015, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.1999.5806DOI Listing

Publication Analysis

Top Keywords

0007 chromosome
8
asthma
7
genome-wide search
4
search linkage
4
linkage asthma
4
asthma german
4
german asthma
4
asthma genetics
4
genetics group
4
group asthma
4

Similar Publications

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002).

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!