Most pathological conditions resulting from infection with the human malaria parasite Plasmodium falciparum occur as a consequence of the sequestration by several adhesion molecules of parasite-infected red blood cells (IRBCs). Recent reports have provided evidence that placental vascular endothelial ligands for IRBCs were mostly restricted to chondroitin sulfate A (CSA). The expression of CSA in malaria-infected placentas was investigated in a prospective case-control study in a hypoendemic area (Dakar, Senegal). The tissue distribution of CSA was measured in the terminal villi by immunostaining combined with image processing in 20 infected and 20 noninfected frozen sections of placenta. The villous surface immunostained by anti-CSA antibody was higher in infected than in noninfected placentas (p<0.03), in placentas with active infection than in those with past chronic infection (p<0.05), and in infected placentas with positive imprints than in those with negative imprints (not significant; p=0.06). Labeling was found in the extracellular matrix and in endothelial and stromal cells of all the placentas. Syncytiotrophoblast immunostaining was detected in all placentas associated with active or active chronic infection (n=7) but in only 4/13 placentas with past chronic infection (p<0.01). The presence of P. falciparum in the imprint was significantly correlated with immunostaining of CSA in syncytiotrophoblasts (p=0.003). These results suggest that CSA can play an important role in the sequestration of P. falciparum in human placentas during the acute phase of infection.

Download full-text PDF

Source
http://dx.doi.org/10.1177/002215549904700604DOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
8
plasmodium falciparum
8
infected noninfected
8
quantitative computer
4
computer image
4
image analysis
4
analysis chondroitin
4
sulfate expression
4
expression placentas
4
placentas infected
4

Similar Publications

A π-Extended AIE Platform for Pattern Recognition of Glycosaminoglycans.

Anal Chem

January 2025

Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.

Accurate discrimination of complicated glycosaminoglycans is a challenging but meaningful task for ensuring their safe use in clinics. With the purpose of reducing the production cost of sensor arrays for glycosaminoglycans, three fluorescence turn-on sensors named , , and were readily synthesized by simple alkylation of the pyridyl units of the π-extended AIEgen, namely, tetra-(4-pyridylphenyl) ethylene. The designed sensors are cross-reactive toward tested glycosaminoglycans including heparin, chondroitin sulfate, hyaluronic acid, and dextran sulfate, whose mechanism could be ascribed to the multivalent electrostatic, CH···π, and hydrophobic interactions between the sensors and different glycosaminoglycans to form corresponding fluorescent aggregates.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Single-organelle visualization tracking natural glycosaminoglycans within mitochondria-lysosome crosstalk for inflammatory homeostasis.

Int J Biol Macromol

January 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).

View Article and Find Full Text PDF

The lack of understanding of polyplexes stability and their dissociation mechanisms, allowing the release of DNA, is currently a major limitation in non-viral gene delivery. One proposed mechanism for DNA-based polyplexes dissociation is based on the electrostatic interactions between polycations and biological polyanions, such as glycosaminoglycans (GAGs). This work aimed at investigating whether GAGs such as heparin, chondroitin sulphate and hyaluronic acid promote the dissociation of PEI/DNA polyplexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!