The effects of interferon-gamma (IFN-gamma) on tight junctions in T84 human intestinal epithelial cells were investigated. Treatment of T84 cells with IFN-gamma caused a dose- and time-dependent increase in monolayer permeability as assessed by transepithelial electrical resistance measurements. Examination of specific proteins associated with tight junctions by immunoblotting and confocal microscopy revealed changes in the expression levels and localization of some of these proteins after exposure of the cells to IFN-gamma. Specifically, IFN-gamma treatment resulted in an almost total loss of zonula occludens (ZO)-1, whereas the levels of ZO-2 and occludin showed relatively modest decreases compared with untreated cells. Loss of ZO-1 was associated with the altered localization of ZO-2 and occludin. In IFN-gamma-treated cells, ZO-2 and occludin were diffusely distributed, whereas, in control cells, they, along with ZO-1, were predominantly localized to the tight junctions. Analysis of ZO-1 protein and RNA by pulse chase and RT-PCR, respectively, showed an increase in protein turnover, a decrease in protein synthesis, and a reduction in RNA levels following IFN-gamma treatment. In contrast to ZO-1, ZO-2 and occludin did not show any major changes in these parameters. In addition, the organization of actin in the apical and tight junction regions, but not in the mid- or basal regions, of the cells was also perturbed by IFN-gamma treatment of cells. Time-course analysis of IFN-gamma-induced alterations in ZO-1 expression and apical actin perturbation indicated that these two effects were intimately linked and could not be dissociated. These results suggest that IFN-gamma affects barrier function in T84 cells by decreasing the levels of ZO-1 and perturbing apical actin organization, which leads to a disorganization of the tight junction and an increase in paracellular permeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1999.276.5.G1279 | DOI Listing |
J Agric Food Chem
December 2024
School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China.
In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway.
View Article and Find Full Text PDFAquac Nutr
August 2024
National and Local Joint Engineering Laboratory for Freshwater Fish Breeding Heilongjiang River Fisheries Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, China.
Pikeperch () is a species with great potential for aquaculture in Eurasian countries, while feed costs limit the scale of pikeperch farming. Adding carbohydrates to the feed as an energy source is a viable approach to reduce costs and to improve the culture status of pikeperch. In this study, in order to determine the optimal carbohydrate requirement of pikeperch, three tapioca starch (8%, 10%, and 12%) added feeds were produced with isonitrogenous (51%) and isolipidic (11%).
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China. Electronic address:
Background: Fine particulate matter (PM) induces ocular surface toxicity through pyroptosis, oxidative stress, autophagy, and inflammatory responses. However, the precise molecular pathways through which PM causes corneal damage remain unclear. This study aims to investigate the underlying mechanisms by exposing human corneal epithelial cells (HCECs) to PM.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland. Electronic address:
The study evaluates the impact of environmental toxicants, such as polycyclic aromatic hydrocarbons (PAHs), on circadian regulations and functions of brain endothelial cells, which form the main structural element of the blood-brain barrier (BBB). PAH are lipophilic and highly toxic environmental pollutants that accumulate in human and animal tissues. Environmental factors related to climate change, such as an increase in frequency and intensity of wildfires or enhanced strength of hurricanes or tropical cyclones, may lead to redistribution of these toxicants and enhanced human exposure.
View Article and Find Full Text PDFPoult Sci
September 2024
State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!