Purified heat shock transcription factor 1 (HSF1) binds to both the regulatory and catalytic components of the DNA-dependent protein kinase (DNA-PK). This observation suggests that DNA-PK may have a physiological role in the heat shock response. To investigate this possibility, we performed a comparison of cell lines that were deficient in either the Ku protein or the DNA-PK catalytic subunit versus the same cell lines that had been rescued by the introduction of a functional gene. DNA-PK-negative cell lines were up to 10-fold more sensitive to heat-induced apoptosis than matched DNA-PK-positive cell lines. There may be a regulatory interaction between DNA-PK and HSF1 in vivo, because constitutive overexpression of HSF1 sensitized the DNA-PK-positive cells to heat but had no effect in DNA-PK-negative cells. The initial burst of hsp70 mRNA expression was similar in DNA-PK-negative and -positive cell lines, but the DNA-PK-negative cells showed an attenuated rate of mRNA synthesis at later times and, in some cases, lower heat shock protein expression. These findings provide evidence for an antiapoptotic function of DNA-PK that is experimentally separable from its mechanical role in DNA double strand break repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.21.14988 | DOI Listing |
J Pharm Pharmacol
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.
Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.
J Clin Oncol
January 2025
Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Chinese University of China, Shatin, Hong Kong Special Administrative Region, China.
Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.
View Article and Find Full Text PDFJ Hered
January 2025
Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, Copenhagen, 1353, Denmark.
The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Ningde Hospital Affiliated to Ningde Normal University, Department of Stomatology, Fujian, China.
Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).
Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!