VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer.

Am J Pathol

Molecular/Cancer Biology Laboratory, Department of Pathology, Haartman Institute, University of Helsinki, Finland.

Published: May 1999

Recently, monoclonal antibodies against the human vascular endothelial growth factor receptor VEGFR-3 were shown to provide a specific antigenic marker for lymphatic endothelium in various normal tissues. In this study we have investigated the expression of VEGFR-3 and its ligand VEGF-C in normal breast tissue and in breast tumors by immunohistochemistry. VEGFR-3 was weakly expressed in capillaries of normal breast tissue and in fibroadenomas. In intraductal breast carcinomas, VEGFR-3 was prominent in the "necklace" vessels adjacent to the basal lamina of the tumor-filled ducts. VEGF receptor 1 and 2 as well as blood vessel endothelial and basal lamina markers were colocalized with VEGFR-3 in many of these vessels. Antibodies against smooth muscle alpha-actin gave a weak staining of the necklace vessels, suggesting that they were incompletely covered by pericytes/smooth muscle cells. A highly elevated number of VEGFR-3 positive vessels was found in invasive breast cancer in comparison with histologically normal breast tissue (P < 0.0001, the Mann-Whitney test). VEGF-C was located in the cytoplasm of intraductal and invasive cancer cells. The results demonstrate that the expression of VEGFR-3 becomes up-regulated in the endothelium of angiogenic blood vessels in breast cancer. The results also suggest that VEGF-C secreted by the intraductal carcinoma cells acts predominantly as an angiogenic growth factor for blood vessels, although this paracrine signaling network between the cancer cells and the endothelium may also be involved in modifying the permeabilities of both blood and lymphatic vessels and metastasis formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866582PMC
http://dx.doi.org/10.1016/S0002-9440(10)65392-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
normal breast
12
breast tissue
12
vegfr-3
8
vegfr-3 ligand
8
ligand vegf-c
8
breast
8
growth factor
8
expression vegfr-3
8
basal lamina
8

Similar Publications

V474I germline variant drives breast cancer metastasis.

Life Metab

February 2025

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

View Article and Find Full Text PDF

Purpose: The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions.

View Article and Find Full Text PDF

Background: According to statistics, the incidence of proximal gastric cancer has gradually increased in recent years, posing a serious threat to human health. Tubular gastroesophageal anastomosis and double-channel anastomosis are two relatively mature anti-reflux procedures. A comparison of these two surgical procedures, tubular gastroesophageal anastomosis and double-channel anastomosis, has rarely been reported.

View Article and Find Full Text PDF

An Optimized Protocol for Simultaneous Propagation of Patient-derived Organoids and Matching CAFs.

Bio Protoc

January 2025

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Recurrent hormone receptor-positive (HR+) breast cancer is a leading cause of cancer mortality in women. Recurrence and resistance to targeted therapies have been difficult to study due to the long clinical course of the disease, the complex nature of resistance, and the lack of clinically relevant model systems. Existing models are limited to a few HR+ cell lines, organoid models, and patient-derived xenograft models, all lacking components of the human tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!