Hepatitis C virus core protein interacts with a human DEAD box protein DDX3.

Virology

Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR, United Kingdom.

Published: May 1999

Several studies have implicated hepatitis C virus (HCV) core in influencing the expression of host genes. To identify cellular factors with a possible role in HCV replication and pathogenesis, we looked for cellular proteins that interact with the viral core protein. A human liver cDNA library was screened in a yeast two-hybrid assay to identify cellular proteins that bind to core. Several positive clones were isolated, one of which encoded the C-terminal 253 amino acids of a putative RNA helicase, a DEAD box protein designated DDX3. Bacterially expressed glutathione-S-transferase-DDX3 fusion protein specifically pulled down in vitro translated and radiolabeled HCV core, confirming a direct interaction. Immunofluorescent staining of HeLa cells with a polyclonal antiserum showed that DDX3 is located predominantly in nuclear speckles and at low levels throughout the cytoplasm. In cells infected with a recombinant vaccinia virus expressing HCV structural proteins (core, E1, and E2), DDX3 and core colocalized in distinct spots in the perinuclear region of the cytoplasm. The regions of the proteins involved in binding were found by deletion analysis to be the N-terminal 59 amino acid residues of core and a C-terminal RS-like domain of DDX3. The human DDX3 is a putative RNA helicase and a member of a highly conserved DEAD box subclass that includes murine PL10, Xenopus An3, and yeast Ded1 proteins. Their role in RNA metabolism or gene expression is unknown. The significance of core-helicase interaction in HCV replication and pathogenesis is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1999.9659DOI Listing

Publication Analysis

Top Keywords

dead box
12
hepatitis virus
8
core
8
core protein
8
box protein
8
hcv core
8
identify cellular
8
hcv replication
8
replication pathogenesis
8
cellular proteins
8

Similar Publications

Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity.

J Med Virol

February 2025

CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases.

View Article and Find Full Text PDF

Background: Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD.

Methods: We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes.

View Article and Find Full Text PDF

Objective: This study aims to explore the genetic characteristics of pediatric sepsis through a combined analysis of multiple methods, including Mendelian Randomization (MR), differential gene expression analysis, and immune cell infiltration assessment. It explores their potential as biomarkers for sepsis risk and their involvement in immune-related pathways.

Methods: Differential expression analysis was performed using public datasets to identify genes with significant expression changes between pediatric sepsis patients and healthy controls.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

DEAD-box helicase 21 (DDX21) is a conserved Asp-Glu-Ala-Asp (DEAD) box RNA helicase with multiple functions that is involved in various cellular processes and diseases. However, the role of DDX21 in the recurrence and prognosis of hepatocellular carcinoma (HCC) patients remains unknown. In the current study, we examined the protein expression of DDX21 in HCC tissues through immunohistochemical staining and analyzed the correlation between DDX21 protein expression and clinical outcome via Kaplan-Meier survival analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!