Primary cultures of human cerebral microvascular endothelial cells (HCMEC) were loaded with fura-2. The intracellular free Ca2+ concentration ([Ca2+]i) was measured by digital imaging microscopy. Agonists ATP (100 micro), thrombin (10 units/ml), and histamine (25 microM) induced a transient [Ca2+]i increase. Histamine (100 microM) induced a biphasic [Ca2+]i increase with an initial [Ca2+]i peak followed by a [Ca2+]i plateau. The [Ca2+]i plateau was blocked by the receptor-operated Ca2+ channel (ROC) blockers SK&F 96365 and NCDC, indicating a contribution by Ca2+ influx through ROC to the [Ca2+]i plateau. However, this [Ca2+]i plateau was not blocked by the voltage-gated Ca2+ channel (VGC) blocker diltiazem (DTZ). Depolarization with 80K+ or application of the VGC agonist BAY K 8644 did not alter the resting [Ca2+]i; but 80K+ reduced the histamine (100 microM) induced [Ca2+]i plateau. These results show that HCMEC are devoid of functional VGC. Thus the membrane potential (Em) regulates Ca2+ entry mainly by enhancing the electrochemical Ca2+ gradient, such that hyperpolarization increases while depolarization decreases [Ca2+]i. Blockade of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) by CPA increased [Ca2+]i. This effect was dependent on extracellular Ca2+ and reduced by iberiotoxin (IBTX) blockade of Ca2+-activated K+ channels (Kca), suggesting a role for Kca in regulating Ca2+ influx. Ca2+ is the principal activator of endothelial nitric oxide synthase (eNOS), which stimulates cyclic GMP production. The final result that the eNOS inhibitor L-NAME enhanced the histamine (100 microM) induced [Ca2+]i plateau suggests a negative feedback loop (via cGMP) of endothelial NO on its own synthesis in the regulation of endothelial [Ca2+]i signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/mvre.1998.2131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!