The crystal structure of cyanovirin-N (CV-N), a protein with potent antiviral activity, was solved at 1.5 A resolution by molecular replacement using as the search model the solution structure previously determined by NMR. The crystals belong to the space group P3221 with one monomer of CV-N in each asymmetric unit. The primary structure of CV-N contains 101 residues organized in two domains, A (residues 1 to 50) and B (residues 51 to 101), with a high degree of internal sequence and structural similarity. We found that under the conditions of the crystallographic experiments (low pH and 26 % isopropanol), two symmetrically related monomers form a dimer by domain swapping, such that domain A of one monomer interacts with domain B' of its crystallographic symmetry mate and vice versa. Because the two swapped domains are distant from each other, domain swapping does not result in additional intramolecular interactions. Even though one of the protein sample solutions that was used for crystallization clearly contained 100 % monomeric CV-N molecules, as judged by various methods, we were only able to obtain crystals containing domain-swapped dimers. With the exception of the unexpected phenomenon of domain swapping, the crystal structure of CV-N is very similar to the NMR structure, with a root-mean-square deviation of 0.55 A for the main-chain atoms, the best agreement reported to date for structures solved using both techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1999.2693DOI Listing

Publication Analysis

Top Keywords

domain swapping
16
crystal structure
12
structure cyanovirin-n
8
swapping crystal
8
structure cv-n
8
domain
6
structure
5
cv-n
5
cyanovirin-n potent
4
potent hiv-inactivating
4

Similar Publications

Design of a light and Ca switchable organic-peptide hybrid.

Proc Natl Acad Sci U S A

February 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

Nat Plants

January 2025

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.

View Article and Find Full Text PDF

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!