Eupodia are F-actin-containing cortical structures similar to vertebrate podosomes or invadopodia found in metastatic cells. Eupodia are rich in alpha-actinin and myosin IB/D, but not a Dictyostelium homologue of talin. In the present study, we localized other actin-binding proteins, ABP120, cofilin, coronin, and fimbrin, in the eupodia and examined the three-dimensional organization of their F-actin system by confocal microscopy and transmission electron microscopy. To examine their function, we analyzed the assembly and disassembly dynamics of the F-actin system in eupodia and its relation to lamellipodial protrusion. Actin dynamics was examined by monitoring S65T-GFP-coronin and rhodamine-actin using a real-time confocal unit and a digital microscope system. Fluorescence morphometric analysis demonstrates the presence of a precise spatiotemporal coupling between F-actin assembly in eupodia and lamellipodial protrusion. When a lamellipodium advances to invade a tight space, additional rows of eupodia are sequentially formed at the base of that lamellipodium. These results indicate that mechanical stress at the leading edge modulates the structural integrity of actin and its binding proteins, such that eupodia are formed when anchorage is needed to boost for invasive protrusion of the leading edge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.1999.4445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!