Reversible protein phosphorylation regulates a wide array of cellular functions. Cells respond to cytokines and various stressors via phosphorylation and thus activation of one or more of the mitogen-activated protein kinase (MAPK) pathways. Involvement of these signal transduction pathways has been implicated in numerous pathologies, including inflammation. Using a primary glia cell culture, we show here that the antioxidant N-acetylcysteine (NAC) and the nitrone-based free radical trap, alpha-phenyl-N-tert-butyl nitrone (PBN), reduce total basal protein phosphorylation in a concentration-dependent manner as assessed by phosphotyrosine analysis and by [gamma-32P]ATP transfer radioassay. In addition we show that NAC inhibits H2O2-induced phosphatase inactivation in glia cell lysate. The PBN- and NAC-induced reduction in protein phosphorylation is accompanied by an increase in phosphatase activity, suggesting that PBN and NAC reduce protein phosphorylation by globally augmenting oxidant-sensitive phosphatase activities. These results partly explain why certain antioxidants also possess anti-inflammatory actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1999.1178 | DOI Listing |
J Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
HHMI, The University of Texas at Austin, Austin, TX 78712.
Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.
Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.
Biomark Med
January 2025
Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China.
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
Hibernating mammals such as the thirteen-lined ground squirrel () experience significant reductions in oxidative metabolism and body temperature when entering a state known as torpor. Animals entering or exiting torpor do not experience permanent loss of brain function or other injuries, and the processes that enable such neuroprotection are not well understood. To gain insight into changes in protein function that occur in the dramatically different physiological states of hibernation, we performed quantitative phosphoproteomics experiments on thirteen-lined ground squirrels that are summer-active, winter-torpid, and spring-active.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!