Configuration saliency revealed in short duration binocular rivalry.

Vision Res

Department of Neurobiology, Brain Research, Weizmann Institute of Science, Rehovot, Israel.

Published: January 1999

Supra-threshold spatial integration was studied by testing the saliency of multi-Gabor element configurations in short duration binocular rivalry (dichoptic masking) conditions. Dichoptic presentations allow for a competition between spatially overlapping supra-threshold stimuli that involve non-overlapping monocular receptive fields in the first stage of visual filtering. Different spatial configurations of Gabor patches (sigma = lambda = 0.12 degree) were presented to one eye (target) together with a bandpass noise presented to the other eye (mask). After a short rivalry period (120 ms) in which a dominance of one eye was established, a probe (a randomly positioned small rectangle of reduced contrast in the target) was presented for additional detection period (80 ms). Probe detection performance was measured (two-alternative-forced choice paradigm (2AFC) by finding the mask contrast leading to 79% correct response. Results show that configuration saliency is consistently expressed as dominance in short-duration binocular rivalry, with similar results obtained for longer durations (200 ms and continuous presentations). We find that textures of high-contrast randomly oriented patches are more dominant than uniform textures where the effect decreases and eventually reverses with decreasing of contrast. For supra-threshold contours, however, we find that smooth collinear contours are more dominant than 'jagged' ones, regardless of phase and contrast. These findings suggest principles underlying early lateral integration mechanisms based on contrast dependent inhibitory and excitatory connections. This mechanism could be based on iso-orientation surround (2D) inhibition and collinear (1D) facilitation, with inhibition being more effective at high contrasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0042-6989(98)00112-6DOI Listing

Publication Analysis

Top Keywords

binocular rivalry
12
configuration saliency
8
short duration
8
duration binocular
8
presented eye
8
contrast
5
saliency revealed
4
revealed short
4
rivalry
4
rivalry supra-threshold
4

Similar Publications

EEG reveals key features of binocular color fusion and rivalry.

Brain Cogn

January 2025

School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China. Electronic address:

Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform.

View Article and Find Full Text PDF

Binocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).

View Article and Find Full Text PDF

Monocular eye-cueing shifts eye balance in amblyopia.

J Vis

January 2025

McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, Canada.

Here, we investigate the shift in eye balance in response to monocular cueing in adults with amblyopia. In normally sighted adults, biasing attention toward one eye, by presenting a monocular visual stimulus to it, can shift eye balance toward the stimulated eye, as measured by binocular rivalry. We investigated whether we can modulate eye balance by directing monocular stimulation/attention in adults with clinical binocular deficits associated with amblyopia and larger eye imbalances.

View Article and Find Full Text PDF

Most people can imagine images that they experience within their mind's eye. However, there are marked individual differences, with some people reporting that they are unable to visualise (aphantasics), and others who report having imagined experiences that are as realistic as seeing (hyper-phantasics). The vividness of imagery is most often measured via subjective self-report.

View Article and Find Full Text PDF

Introduction: The binocular system provides a stereoscopic view from slightly different retinal images and produces perceptual alternations, namely, binocular rivalry, from significantly different retinal images. When we observe a stereogram in which the stimulus configurations induce stereopsis and rivalry simultaneously, the binocular system prefers stereopsis to rivalry. However, changes in visual perception are yet to be investigated by parametrically manipulating the components of a stereogram.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!