The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.20.13938DOI Listing

Publication Analysis

Top Keywords

nh2-terminal sequence
12
native conditions
8
wild type
8
native structure
8
rhodanese
7
structure
7
native
6
nh2-terminal
4
sequence truncation
4
truncation decreases
4

Similar Publications

Nanoparticles (NPs)-mediated silencing of GSTP1 expression to reverse chemoresistance for effective breast cancer therapy.

J Colloid Interface Sci

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China. Electronic address:

Chemotherapy remains the primary treatment modality for breast cancer (BCa) patients. However, chemoresistance commonly arises in clinical settings, contributing to poor prognosis. The development of chemoresistance is a dynamic and complex process involving the activation of oncogenes and inactivation of tumor suppressor genes.

View Article and Find Full Text PDF

Chronic alcohol consumption aggravates acute kidney injury through integrin β1/JNK signaling.

Redox Biol

November 2024

State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China. Electronic address:

Article Synopsis
  • Alcohol abuse is linked to multiple health issues, with this study focusing on how it affects acute kidney injury (AKI), revealing that it worsens AKI in female mice but not in males.
  • The study found that chronic and binge alcohol consumption led to more severe kidney dysfunction and cell damage (apoptosis) in female mice after kidney injury compared to control groups.
  • Key mechanisms identified include the activation of integrin β1 and JNK signaling pathways, and the role of acetaldehyde, a byproduct of alcohol metabolism, which increases the severity of AKI in female mice.
View Article and Find Full Text PDF

Extracellular Vesicle Inhibitors Enhance Cholix-Induced Cell Death via Regulation of the JNK-Dependent Pathway.

Toxins (Basel)

August 2024

Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.

is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by , is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by remains unclear.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEVs) are nanometer-sized membranous particles shed by many types of cells and can transfer a multitude of cargos between cells. Recent studies of sEVs have been focusing on their potential to be novel drug carriers due to natural composition and other promising characteristics. However, there are challenges in sEVs-based drug delivery, one of which is the inefficient loading of drugs into sEVs, especially for large biomolecules.

View Article and Find Full Text PDF

Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis.

Int J Mol Sci

June 2021

Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.

Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!