Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.20.13748DOI Listing

Publication Analysis

Top Keywords

ca2+ release
28
ip3-induced ca2+
16
cytosolic ca2+
16
ca2+
12
ip3 receptor
12
ca2+ sr2+
8
calmodulin inhibited
8
inhibited ca2+
8
release ip3
8
ca2+ concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!