Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Amrita School of Artificial Intelligences, Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
Lung cancer is the leading cause of cancer-related fatalities globally, accounting for the highest mortality rate among both men and women. Mutations in the epidermal growth factor receptor (EGFR) gene are frequently found in non-small cell lung cancer (NSCLC). Since curcumin and CB[2]UN support various medicinal applications in drug delivery and design, we investigated the effect of curcumin and CB[2]UN-based drugs in controlling EGFR-mutant NSCLC through a dodecagonal computational approach.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France. Electronic address:
The lack of understanding of polyplexes stability and their dissociation mechanisms, allowing the release of DNA, is currently a major limitation in non-viral gene delivery. One proposed mechanism for DNA-based polyplexes dissociation is based on the electrostatic interactions between polycations and biological polyanions, such as glycosaminoglycans (GAGs). This work aimed at investigating whether GAGs such as heparin, chondroitin sulphate and hyaluronic acid promote the dissociation of PEI/DNA polyplexes.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 Guizhou, China. Electronic address:
High-pressure and high-temperature Raman spectra of natural pyromorphite, vanadinite and mimetite were measured up to 11 GPa and 973 K, respectively. No phase transition was observed within the temperature and pressure ranges in this study. Raman modes for pyromorphite, vanadinite and mimetite vary with temperature or pressure linearly.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, 91058 Erlangen, Germany.
Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).
View Article and Find Full Text PDFACS Nano
January 2025
Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!