(Responder [R] X nonresponder [NR])F1 mice give indistinguishable primary in vitro plaque-forming cell (PFC) responses to either R or NR parental macrophages (Mphi) pulsed with the Ir-gene controlled antigen L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). However, such (R X NR)F1 mice, if primed to GAT, retained in vitro responsiveness to GAT-R-Mphi, but no longer responded to GAT-NR-Mphi. This suggested (a) a possible Mphi-related locus for Ir gene activity in this model, and (b) the occurrence of active suppression after priming with GAT leading to a selective loss of the usual primary responsiveness of (R X NR)F1 mice to GAT-NR-Mphi. This latter interpretation was tested in the current study. [Responder C57BL/6 (H-2b) X nonresponder DBA/1 (H-2q)]F1 mice were primed with 100 microgram GAT in pertussis adjuvant. 4-8 wk later, spleen cells from such mice were tested alone or mixed with normal unprimed F1 spleen cells for PFC responses to GAT-R-Mphi and GAT-NR-Mphi. The primed cells failed to respond to GAT-NR-Mphi, and moreover, actively suppressed the normal response of unprimed F1 cells to GAT-NR-Mphi. If the primed spleen cell donor had been treated with 5 mg/kg cyclophosphamide 3 days before priming or with 5-10 microliter/day of an antiserum to the I-Jb subregion [B10.A(5R) anti B10.A(3R)] during the first 4 days postpriming (both procedures known to inhibit suppressor T-cell activity), cells from such mice responded in secondary culture to both GAT-R-Mphi and also GAT-NR-MPhi. In addition, such spleen cells no longer were capable of suppressing normal F1 cells in response to GAT-NR-Mphi. Similar data were obtained using [CBA (H-2k) X DBA/1 (H-2q)]F1. Further, it was shown that (a) primary responsiveness to GAT-NR-Mphi was not an artifact of in vitro Mphi pulsing, because in vivo GAT-pulsed Mphi showed the same activity and (b) the secondary restriction for Mphi-antigen presentation was controlled by H-2 linked genes. These data suggest an important role for suppressor T cells in H-2 restricted secondary PFC responses, and also provide additional support for the hypothesis that Ir-gene controlled differences in Mphi antigen presentation are related to both suppressor cell generation and overall responsiveness in the GAT model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185064 | PMC |
http://dx.doi.org/10.1084/jem.148.5.1324 | DOI Listing |
Transl Psychiatry
January 2025
Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
Graduate Institute of Sports Pedagogy, University of Taipei, Taipei, TAIWAN.
Purpose: This study used functional near-infrared spectroscopy (fNIRS) to investigate the effects of gymnastics programs with high versus low cognitive load on children's visuospatial working memory (VSWM) and prefrontal cortex (PFC) oxygenation.
Methods: Eighty-one healthy children aged 7 to 10 from Taipei City were randomly assigned to high cognitive load (HG), low cognitive load (LG), and control (SC) groups. The HG and LG groups underwent an 8-week gymnastics program with different levels of cognitive load, while the SC group participated in a static course.
Nature
January 2025
Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.
View Article and Find Full Text PDFNat Commun
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
Background: Ginkgo biloba leaf extract EGb 761® has shown clinical efficacy in patients with mild cognitive impairment and dementia. However, the pharmacological action of EGb 761® in Alzheimer's disease (AD) remains unclear and molecular mechanisms targeted in the brain are not completely understood.
Hypothesis/purpose: We aimed to investigate 1) the potential sex-dependent effects of oral administration of EGb 761® in 5xFAD mice, an AD mouse model, and 2) the underlying microglial subtype responsible for the observed anti-inflammatory effects in the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!