Ethanol consumption and place-preference conditioning in the alcohol-preferring C57BL/6 mouse: relationship with motor activity patterns.

Alcohol Clin Exp Res

Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston 29425-0742, USA.

Published: April 1999

Ethanol place-preference conditioning (PC) was conducted in drug-naive and ethanol pre-exposed female and male C57BL/6J (C57) mice to assess whether environmental cues can develop positive incentive value for ethanol-preferring animals when associated with administration of ethanol. After 12 days episodic access to free-choice ethanol and/or water self-administration, mice received eight ethanol injections (1.75 g/kg/i.p.) 5 min before placement in their nonpreferred PC chamber and eight saline injections paired with their preferred chamber. Control mice received eight saline injections (20 ml/kg) in both their preferred and nonpreferred chambers. Mice of both sexes developed strong ethanol PC. Correlational analysis indicated that the strength of ethanol PC for mice with a prior ethanol drinking experience was inversely related to the amount of ethanol consumed regardless of gender. Furthermore, depending on gender and previous ethanol drinking experience, ethanol PC was differentially related to initial baseline motor activity, the initial motor response to ethanol, or rapid change in the motor response to ethanol. Thus, a complicated relationship between neural systems that mediate ethanol reward and motor activity may exist as suggested by current addiction theory.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ethanol
15
motor activity
12
place-preference conditioning
8
mice received
8
saline injections
8
ethanol drinking
8
drinking experience
8
motor response
8
response ethanol
8
motor
5

Similar Publications

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

In vitro and in vivo leishmanicidal and trypanocidal activities of isoflavans from Tabebuia chrysantha (Jacq.) G. Nicholson timber by-products.

Exp Parasitol

January 2025

Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia. Electronic address:

Cutaneous Leishmaniasis and Chagas disease are neglected tropical diseases that affect millions worldwide. Despite the high morbidity associated with these infections, current treatments are often highly toxic and are showing diminishing efficacy. Thus, new therapeutic options are urgently needed.

View Article and Find Full Text PDF

Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation.

Chem Biol Interact

January 2025

Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:

Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!