Aims/hypothesis: The identification of mutations in hepatocyte nuclear factors-1alpha, -4alpha, -1beta and insulin promoter factor-1 in maturity onset diabetes of the young (MODY) has highlighted the role that transcription factors may have in the development of diabetes. This result has focused molecular genetic studies of diabetes on other transcription factors expressed in the pancreatic beta cell. The basic helix-loop-helix transcription factor BETA2/NEUROD1 (gene symbol, NEUROD1) and the paired box homeodomain transcription factor PAX4 (PAX4) have an important role in islet and beta-cell development. We have examined the contribution of these transcription factors to the development of MODY and late-onset Type II (non-insulin-dependent) diabetes mellitus.

Methods: Linkage studies have been done in MODY families reported to have no mutations in the five known MODY genes and in affected sibling pairs from families with late-onset Type II diabetes. Mutation screening of the coding regions of both genes was also realised by SSCP followed by sequencing in MODY patients and in probands with late-onset Type II diabetes.

Results: There was no evidence of linkage with the markers for NEUROD1 and PAX4 either with MODY or late-onset Type II diabetes. Mutation screening showed single nucleotide polymorphisms, several of which resulted in amino acid substitutions: NEUROD1, Ala45Thr; PAX4, Pro321His and Pro334Ala. These amino acid sequence variants were not associated with Type II diabetes.

Conclusion/interpretation: Our results indicate that NEUROD1 and PAX4 are not a common cause of either MODY or late-onset Type II diabetes in the French Caucasian population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s001250051182DOI Listing

Publication Analysis

Top Keywords

late-onset type
20
transcription factors
16
type diabetes
16
mody late-onset
12
evidence linkage
8
diabetes
8
factors development
8
transcription factor
8
diabetes mutation
8
mutation screening
8

Similar Publications

Delayed Progression of Ataxia with a Static Cerebellar Lesion- Consider SCA27B.

Cerebellum

January 2025

Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.

Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.

View Article and Find Full Text PDF

A diagnosis of age-related macular degeneration (AMD) may have a significant impact on a patient's life. Therefore, it is important to consider differential diagnoses, as these can differ considerably from AMD regarding prognosis, inheritance, monitoring and therapy. Differential diagnoses include other macular diseases with drusen, drusen-like changes, monogenic retinal dystrophies, as well as a wide range of other, often rare macular diseases.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Late-onset Pompe disease (LOPD) is an autosomal recessive lysosomal storage disorder that results in severe progressive proximal muscle weakness. Over time, reductions in muscle strength result in respiratory failure and a loss of ambulation. Delayed diagnosis of LOPD deprives patients of treatments that can enhance quality of life and potentially slow disease progression.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!