The lack of classical HLA molecules on trophoblast prevents allorecognition by maternal T lymphocytes, but poses the problem of susceptibility to NK lysis. Expression of the nonclassical class I molecule, HLA-G, on cytotrophoblast may provide the protective effect. However, the class I-negative syncytiotrophoblast escapes NK lysis by maternal PBL. In addition, while HLA-G-expressing transfectants of LCL.721.221 cells are protected from lymphokine-activated killer lysis, extravillous cytotrophoblast cells and HLA-G-expressing choriocarcinoma cells (CC) are not. The aim of this work was therefore to clarify the role of HLA class I expression on trophoblast cell resistance to NK lysis and on their susceptibility to lymphokine-activated killer lysis. Our results showed that both JAR (HLA class I-negative) and JEG-3 (HLA-G- and HLA-Cw4-positive) cells were resistant to NK lysis by PBL and were equally lysed by IL-2-stimulated PBL isolated from a given donor. In agreement, down-regulating HLA class I expression on JEG-3 cells by acid treatment, masking these molecules or the putative HLA-G (or HLA-E) receptor CD94/NKG2 and the CD158a/p58.1 NKR with mAbs, and inducing self class I molecule expression on JAR cells did not affect NK or LAK lysis of CC. These results demonstrate that the resistance of CC to NK lysis mainly involves an HLA class I-independent mechanism(s). In addition, we show that the expression of a classical class I target molecule (HLA-B7) on JAR cells is insufficient to induce lysis by allospecific polyclonal CTL.
Download full-text PDF |
Source |
---|
Front Microbiol
January 2025
Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan.
Background: HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
Context: Type 1 diabetes (T1D) is characterized by the presence of autoantibodies on a genetic background largely determined by HLA class II haplotypes. Stage 1 T1D is characterized by the presence of multiple autoantibodies and normoglycemia.
Objective: To investigate the prevalence of high-risk HLA-DQB1 haplotypes and the extent of islet autoimmunity in pancreatic tissues from non-diabetic organ donors with autoantibodies.
HLA
January 2025
Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Novel MICB alleles MICB*004:01:31, MICB*004:01:32, MICB*004:01:33 and MICB*005:02:59, were identified using next generation sequencing.
View Article and Find Full Text PDFJID Innov
March 2025
Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland.
In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!