Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot.

Diabet Med

Department of Diabetes and Vascular Medicine, Royal Devon & Exeter Hospital, University of Exeter, UK.

Published: January 1999

Aims: Our objective was to assess the qualitative soft tissue changes which occur in the diabetic neuropathic foot, which may predispose to ulceration, using a specific magnetic resonance imaging (MRI) contrast sequence, magnetization transfer (MT) which produces contrast based on exchange between water bound to macromolecules (e.g. collagen) and free water (e.g. extracellular fluid).

Methods: The first metatarsal head of 19 diabetic neuropathic subjects and 11 diabetic non-neuropathic controls was studied using a 'targeted' radiofrequency coil. Neuropathy was classified using vibration perception threshold (VPT) (< or > 25 V), cold threshold (< 1 degree C or > 4 degrees C) and Michigan neuropathy score (< 5 or > 15). Peripheral vascular disease was excluded. Results were expressed as percentage of tissue MT activity in a cross-sectional area. At autopsy full thickness biopsies were taken from the plantar fat pad of 10 unrelated subjects with diabetic neuropathy.

Results: Healthy muscle displays high MT activity, whereas adipose tissue induces little activity. Muscle MT activity was considerably reduced (75+/-20%, 30+/-24%, P<0.001) and fat pad MT activity was considerably increased in subjects with neuropathy (37+/-17% 68+/-21%, P<0.001). Muscle fibre atrophy decreases MT activity, whereas fibrous infiltration of the fat pad increases MT activity, fibro-atrophic post-mortem histological changes were found in the plantar fat pads of all neuropathic subjects examined (n = 10).

Conclusions: Changes in MT activity reflect qualitative structural changes which this study reveals are extensive in the diabetic neuropathic foot. Fibrotic atrophy of the plantar fat pad may affect its ability to dissipate the increased weight-bearing forces associated with diabetic neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1464-5491.1999.00005.xDOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
resonance imaging
8
soft tissue
8
diabetic neuropathic
8
subjects diabetic
8
diabetic
5
imaging techniques
4
techniques demonstrate
4
demonstrate soft
4
tissue
4

Similar Publications

Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

Photorealistic rendering of fetal faces from raw magnetic resonance imaging data.

Ultrasound Obstet Gynecol

January 2025

Decision and Bayesian Computation, Neuroscience & Computational Biology Departments, CNRS UMR 3571, Institut Pasteur, Paris, France.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!