Appreciation of the role of nitric oxide (NO) in mammalian cell biology has toppled the paradigm that biological signaling is initiated exclusively by noncovalent, lock-and-key-type interactions with receptor proteins. Remarkably, nitric oxide is a free radical that signals by chemical reaction with its protein targets, resulting in covalent modifications and a stable alteration in protein structure and function. Although most proteins may be coerced to react with NO in vitro, the specific proteins that are functionally modified by NO within cells will depend on the concentration of NO and the composition of the intracellular milieu. A further level of complexity is introduced into NO signaling by the fact that reactions can occur with NO directly, or secondarily with NO-derived species. Much to the surprise of those who thought that reactive molecules are generated and act only under pathophysiological conditions (e.g., ischemia-reperfusion injury), NO has emerged as a prototype molecule that signals by chemistry in normal physiology. The unique attributes and importance of NO were recently recognized by the Nobel Prize Committee, with their decision to award the 1998 Prize in Medicine to Drs Furchgott, Ignarro, and Murad, pioneers in NO biology. This review surveys what we believe to be the most important mechanisms and targets of signaling by NO.
Download full-text PDF |
Source |
---|
Scientifica (Cairo)
January 2025
Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFEur Respir J
January 2025
Sanofi, Bridgewater, NJ, USA.
Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
From the Department of Dermatology, Center for Global Health, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania and Florida Center for Dermatology, St Augustine, Florida. Electronic address:
J Allergy Clin Immunol
January 2025
Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!