The adhesion of a recently described species, Acinetobacter venetianus VE-C3 (F. Di Cello, M. Pepi, F. Baldi, and R. Fani, Res. Microbiol. 148:237-249, 1997), to diesel fuel (a mixture of C12 to C28 n-alkanes) and n-hexadecane was studied and compared to that of Acinetobacter sp. strain RAG-1, which is known to excrete the emulsifying lipopolysaccharide, emulsan. Oxygen consumption rates, biomass, cell hydrophobicity, electrophoretic mobility, and zeta potential were measured for the two strains. The dropping-mercury electrode (DME) was used as an in situ adhesion sensor. In seawater, RAG-1 was hydrophobic, with an electrophoretic mobility (&mgr;) of -0.38 x 10(-8) m2 V-1 s-1 and zeta potential (zeta) of -4.9 mV, while VE-C3 was hydrophilic, with &mgr; of -0.81 x 10(-8) m2 V-1 s-1 and zeta of -10.5 mV. The microbial adhesion to hydrocarbon (MATH) test showed that RAG-1 was always hydrophobic whereas the hydrophilic VE-C3 strain became hydrophobic only after exposure to n-alkanes. Adhesion of VE-C3 cells to diesel fuel was partly due to the production of capsular polysaccharides (CPS), which were stained with the lectin concanavalin A (ConA) conjugated to fluorescein isothiocyanate and observed in situ by confocal microscopy. The emulsan from RAG-1, which was negative to ConA, was stained with Nile Red fluorochrome instead. Confocal microscope observations at different times showed that VE-C3 underwent two types of adhesion: (i) cell-to-cell interactions, preceding the cell adhesion to the n-alkane, and (ii) incorporation of nanodroplets of n-alkane into the hydrophilic CPS to form a more hydrophobic polysaccharide-n-alkane matrix surrounding the cell wall. The incorporation of n-alkanes as nanodroplets into the CPS of VE-C3 cells might ensure the partitioning of the bulk apolar phase between the aqueous medium and the outer cell membrane and thus sustain a continuous growth rate over a prolonged period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91295PMC
http://dx.doi.org/10.1128/AEM.65.5.2041-2048.1999DOI Listing

Publication Analysis

Top Keywords

diesel fuel
12
acinetobacter venetianus
8
electrophoretic mobility
8
zeta potential
8
rag-1 hydrophobic
8
10-8 v-1
8
v-1 s-1
8
s-1 zeta
8
ve-c3 cells
8
adhesion
7

Similar Publications

In this study, we evaluated the pollution history by metals over the twentieth century in an urban reservoir (Garças Reservoir, Metropolitan Region of São Paulo, Southeast Brazil) by the paleolimnological approach. The concentrations of eight metals (Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined in a Pb-dated sediment core (~ 100 years of information). Metal's enrichment and pollution degree were assessed using the Consensus-Based Sediment Quality Guidelines (CBSQG), enrichment factor (EF), Geoaccumulation Index (I), and Potential Ecological Risk Index (RI).

View Article and Find Full Text PDF

Multithermal fluid (MTF) component ratios and injection parameters are critical inputs in offshore heavy oil development, such as injection adjustment and monitoring, productivity prediction, and generator combustion process optimization. We implement simultaneous in situ diagnostics of two emblematic injection parameters, the gas-water ratio (GWR) and noncondensable gases proportion (NCGP), in a pilot-scale environment. A system-level integration of a novel laser absorption spectroscopy multigas sensor system based on integrating stray radiation suppression and a circular cell-enhanced strategy is proposed.

View Article and Find Full Text PDF

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

A Comprehensive OBD Data Analysis Framework: Identification and Factor Analysis of High-Emission Heavy-Duty Vehicles.

Environ Pollut

January 2025

Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.

On-Board Diagnostic (OBD) systems enable real-time monitoring of NOx emissions from heavy-duty diesel vehicles (HDDVs). However, few studies have focused on the root cause analysis of these emissions using OBD data. To address this gap, this study proposes an integrated analysis framework for HDDV NOx emissions that combines data processing, high-emission vehicle identification, and emission cause analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!