Intracellular antioxidants, glutathione and ascorbate, and two molecular markers of oxidative DNA damage, 5-hydroxy-2'-deoxycytidine (5-OH-dCyd) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo), were measured in lymphocytes from 105 healthy volunteers. The analysis of 5-OH-dCyd and 8-oxo-dGuo was carried out by HPLC with electrochemical detection such that both compounds were detected on the same chromatography run. There was no significant difference in oxidative DNA damage when the extraction of DNA from cells using phenol was carried out under anaerobic conditions or in the presence of metal ion chelators. This indicates that auto-oxidation of DNA during sample preparation was minimal. Using the above methods, the average level of oxidative DNA damage in lymphocytes was 2.9 +/- 1.4 for 5-OH-dCyd and 4.5 +/- 1.8 for 8-oxo-dGuo lesions per 10(6) dGuo (n = 105). It is unlikely that artifactual oxidation contributed to the observed damage because the level of 5-OH-dCyd was comparable with that of 8-oxo-dGuo in lymphocyte DNA, whereas 8-oxo-dGuo outnumbers 5-OH-dCyd by a ratio of >5:1 when DNA is exposed to various oxidants, including ionizing radiation or Fenton reagents. Rather, the nearly equal levels of 5-OH-dCyd and 8-oxo-dGuo in cellular DNA implies that 8-oxo-dGuo may be more efficiently removed by DNA repair. Finally, and most importantly, the correlation of our endpoints revealed that the naturally occurring level of intracellular antioxidants was negatively correlated to the level of oxidative DNA damage with the strongest correlation observed for glutathione and 8-oxo-dGuo (r = -0.36; P < 0.001). These results strongly suggest that intracellular glutathione and ascorbate protect human lymphocytes against oxidative DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/20.4.607DOI Listing

Publication Analysis

Top Keywords

oxidative dna
24
dna damage
24
glutathione ascorbate
12
dna
12
negatively correlated
8
human lymphocytes
8
intracellular antioxidants
8
8-oxo-dguo
8
5-oh-dcyd 8-oxo-dguo
8
level oxidative
8

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.

View Article and Find Full Text PDF

is a major contributor to infections in humans and is widely distributed in the environment. It is capable of aerobic and anaerobic growth, providing adaptability to environmental changes and in confronting immune responses. We applied high-throughput native 2-dimensional metalloproteomics to under oxic and anoxic conditions.

View Article and Find Full Text PDF

Microplastic and nanoplastic exposure and risk of diabetes mellitus.

World J Clin Cases

January 2025

Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan.

The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!