Vessel injury results in the elaboration of various cytokines, including tumor necrosis factor-alpha (TNF-alpha), which may influence vascular smooth muscle cell (VSMC) function and contribute to atherogenesis. We tested the hypothesis that TNF-alpha-induced VSMC proliferation requires activation of the transcription factor nuclear factor-kappaB (NF-kappaB), which could be prevented by delivery of the NF-kappaB inhibitory peptide, IkappaBalpha. TNF-alpha induced concentration-dependent human VSMC proliferation, and neutralizing antibody to interleukin-6 reduced TNF-alpha-induced VSMC proliferation by 65%. In TNF-alpha-stimulated VSMCs, there was a 3-fold increase in NF-kappaB-dependent luciferase reporter activity that was associated with degradation of IkappaBalpha. To determine an essential role for NF-kappaB in TNF-alpha-induced VSMC proliferation, recombinant IkappaBalpha was introduced into VSMCs via liposomal delivery. Under these conditions, TNF-alpha-induced NF-kappaB nuclear translocation and DNA binding were inhibited, NF-kappaB-dependent luciferase activity was reduced by 50%, there was no degradation of native IkappaBalpha detected, interleukin-6 production was reduced by 54%, and VSMC proliferation was decreased by 60%. In conclusion, the mitogenic effect of TNF-alpha on human arterial VSMCs is dependent on NF-kappaB activation and may be prevented by exogenously delivered IkappaBalpha. Furthermore, liposomal delivery of endogenous inhibitory proteins may represent a novel, therapeutically accessible method for selective transcriptional suppression in the response to vascular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.84.8.867DOI Listing

Publication Analysis

Top Keywords

vsmc proliferation
20
liposomal delivery
12
tnf-alpha-induced vsmc
12
tumor necrosis
8
vascular smooth
8
smooth muscle
8
nf-kappab-dependent luciferase
8
proliferation
6
vsmc
6
nf-kappab
5

Similar Publications

Background: Atherosclerosis is a major contributor to global cardiovascular morbidity and mortality, driven by the chronic inflammatory proliferation of vascular smooth muscle cells (VSMCs), which destabilizes atherosclerotic plaques. The EphA2/ephrinA1 signaling pathway plays a critical role in modulating VSMC inflammatory responses, making it an attractive therapeutic target. However, the clinical application of EphA2 inhibitors remains limited due to safety concerns.

View Article and Find Full Text PDF

Exosome miR-199a-5p modulated vascular remodeling and inflammatory infiltration of Takayasu's arteritis.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.

Background: Advances in treatment have swiftly alleviated systemic inflammation of Takayasu's arteritis (TAK), while subclinical vascular inflammation and the ensuing arterial remodeling continue to present unresolved challenges in TAK. The phenotypic switching of vascular smooth muscle cells (VSMC) is regarded as the first step in vascular pathology and contributes to arterial remodeling. Exosomes facilitate the transfer and exchange of proteins and specific nucleic acids, thereby playing a significant role in intercellular communication.

View Article and Find Full Text PDF

Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.

View Article and Find Full Text PDF

Dehydrocorydaline maintains the vascular smooth muscle cell contractile phenotype by upregulating Spta1.

Acta Pharmacol Sin

January 2025

The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.

View Article and Find Full Text PDF

One promising strategy to alleviate aging symptoms is the treatment with senolytics that is compounds which selectively eliminate senescent cells. Some therapies aim to reduce symptoms of cellular senescence without senescent cell eradication (senomorphic activity). However, senotherapies raise many questions concerning the selectivity, safety and efficiency of senolitic drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!