We have investigated the pathophysiological basis of cardiac dysfunction in autoimmune myocarditis and in the resulting dilated cardiomyopathy. To this end we utilized the myosin-induced autoimmune myocarditis model in BALB/c mice. Myocarditis has been found to be associated with massive ventricular lymphocyte infiltration and a 50% reduction in tail artery blood flow, reflecting the depressed cardiac function in myocarditis. Action potential characteristics of control and diseased isolated ventricular myocytes were (mean+/-SEM): resting potential: -68.1+/-1. 1,-68.3+/-0.7 mV; action potential amplitude: 96.5+/-10.4, 92.3+/-4. 4 mV; action potential duration at 80% repolarization (APD80) 38+/-5, 116+/-24* ms; * P<0.05. We utilized the whole cell voltage clamp technique to explore ion currents involved in APD prolongation and arrhythmogenic activity, and found that in diseased myocytes the transient outward current (Ito) was markedly attenuated. At a membrane potential of +40 mV, in control and in diseased myocytes, I(to) current density was 14.7+/-1.5 and 6.5+/-1.4 pA/pF, respectively, P<0.005. In contrast, the L-type Ca2+current (ICa,L) remained unchanged. To further explore the basis for cardiac impairment, we simultaneously measured [Ca2+]i transient and contraction in isolated normal and diseased myocytes. The major findings indicated that both the relaxation kinetics of [Ca2+]i transients and myocyte contraction were significantly faster in the diseased myocytes. In conclusion, substantial, potentially reversible, electrophysiological and mechanical perturbations in ventricular myocytes from mice with myosin-induced autoimmune myocarditis appear to contribute to disease-related cardiac dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jaut.1998.0273 | DOI Listing |
J Clin Invest
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction.
View Article and Find Full Text PDFCureus
December 2024
Nephrology, Ibn Sina Hospital, Rabat, Rabat, MAR.
Cryoglobulinemic vasculitis is a rare small-vessel vasculitis leading to multi-organ dysfunction, often associated with chronic infections like hepatitis C virus (HCV), and autoimmune disorders. Most cases involve mixed monoclonal or polyclonal immunoglobulins, presenting symptoms such as purpura, arthralgias, and weakness. Severe organ involvement, particularly cardiac, is rare but potentially life-threatening.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Medical College, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
Purpose Of Review: This review aims to assess the current landscape of animal models used in myocarditis research, with a focus on understanding their utility in uncovering the pathophysiology of the disease. The goal is to evaluate these models' strengths and weaknesses and propose optimizations to make them more relevant and reliable for both mechanistic studies and therapeutic interventions in myocarditis.
Recent Findings: Recent studies have primarily utilized animal models, particularly viral and autoimmune myocarditis models, to study disease mechanisms.
Cells
December 2024
Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
Myocarditis is an inflammatory disease of the myocardium with heterogeneous etiology, clinical presentation, and prognosis; when it is associated with myocardial dysfunction, this identifies the entity of inflammatory cardiomyopathy. In the last few decades, the relevance of the immune system in myocarditis onset and progression has become evident, thus having crucial clinical relevance in terms of treatment and prognostic stratification. In fact, the advances in cardiac immunology have led to a better characterization of the cellular subtypes involved in the pathogenesis of inflammatory cardiomyopathy, whether the etiology is infectious or autoimmune/immune-mediated.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan. Electronic address:
Parvovirus B19 (B19V) is a human pathogen from the Parvoviridae family that primarily targets and replicates in erythroid progenitor cells (EPCs). While its symptoms are typically self-limiting in healthy individuals, B19V can cause or exacerbate autoimmune diseases in vulnerable patients. This review integrates the involvement of B19V in the development and worsening of several autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), hematological disorders (thalassemia, anemia, and thrombocytopenia), vasculitis, antiphospholipid syndrome (APS), dermatological disease (systemic sclerosis, psoriasis), autoimmune thyroid disease, myocarditis, and myasthenia gravis, and autoinflammatory disease of adult-onset Still's disease (AOSD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!