Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada.

Am J Epidemiol

Cancer Control Research Programme, British Columbia Cancer Agency, Vancouver, Canada.

Published: May 1999

In a case-control study of childhood leukemia in relation to exposure to power-frequency electric and magnetic fields (EMF), 399 children resident in five Canadian provinces who were diagnosed at ages 0-14 years between 1990 and 1994 (June 1995 in British Columbia and Quebec) were enrolled, along with 399 controls. Exposure assessment included 48-hour personal EMF measurement, wire coding and magnetic field measurements for subjects' residences from conception to diagnosis/reference date, and a 24-hour magnetic field bedroom measurement. Personal magnetic fields were not related to risk of leukemia (adjusted odds ratio (OR) = 0.95, p for trend = 0.73) or acute lymphatic leukemia (OR = 0.93, p for trend = 0.64). There were no clear associations with predicted magnetic field exposure 2 years before the diagnosis/reference date or over the subject's lifetime or with personal electric field exposure. A statistically nonsignificant elevated risk of acute lymphatic leukemia was observed with very high wiring configurations among residences of subjects 2 years before the diagnosis/reference date (OR = 1.72 compared with underground wiring, 95% confidence interval 0.54-5.45). These results provide little support for a relation between power-frequency EMF exposure and risk of childhood leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.aje.a009899DOI Listing

Publication Analysis

Top Keywords

magnetic fields
12
childhood leukemia
12
magnetic field
12
power-frequency electric
8
electric magnetic
8
fields risk
8
risk childhood
8
acute lymphatic
8
lymphatic leukemia
8
field exposure
8

Similar Publications

Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.

View Article and Find Full Text PDF

Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli.

View Article and Find Full Text PDF

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

Designing invisibility devices for required frequency bands is important in anti-detection methods in various fields such as communications, construction, and others. However, traditional design methods are time-consuming, with manual adjustment of parameters and continuous trial and error. Fortunately, the data-driven approach based on deep learning has revolutionized the field.

View Article and Find Full Text PDF

In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!