Retigabine (D-23129, N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) is a potent anticonvulsant in a variety of animal models. Rats metabolized [14C]retigabine mainly through glucuronidation and acetylation reactions. Glucuronides were detected in incubates with liver microsomes or slices, in plasma, and in bile and feces but were absent in urine (0-24 h) that contained about 2% of the dose as retigabine and approximately 29% of the dose in > 20 metabolites, which are derived mainly from acetylation reactions. About 67% of the radioactivity was excreted into feces, approximately 10% of the dose as glucuronide. The metabolite pattern in the urine (0-24 h) of dogs was comparatively simple in that retigabine (13%), retigabine-N-glucuronide (5%), and retigabine-N-glucoside (1%) were present. In the same 24-h interval, about 39% of unchanged retigabine was excreted into feces. Plasma profiling and spectroscopic analysis (liquid chromatography with tandem mass spectrometry NMR) of two isolated urinary metabolites obtained after single oral dosing of 600 mg retigabine in healthy volunteers indicated that both acetylation and glucuronidation are major metabolic pathways of retigabine in humans. We found that in vitro assays with liver slices from rat and humans reveal the major circulating metabolites in vivo.
Download full-text PDF |
Source |
---|
CNS Drugs
January 2025
Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy.
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
Neurobiol Dis
February 2025
The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia. Electronic address:
Background: Developmental and epileptic encephalopathies (DEE) are rare but severe neurodevelopmental disorders characterised by early-onset seizures often combined with developmental delay, behavioural and cognitive deficits. Treatment for DEEs is currently limited to seizure control and provides no benefits to the patients' developmental and cognitive outcomes. Genetic variants are the most common cause of DEE with KCNQ2 being one of the most frequently identified disease-causing genes.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!