Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To test for direct and indirect effects of a top predator on three lower trophic levels, we conducted two multiyear predator addition experiments in a tropical wet forest. Periodic additions of a top predator (predatory clerid beetle) to a wet forest understory shrub caused a reduction in the predatory beetle's prey (a predatory ant), increased herbivory, and reduced leaf area of the plant. These effects occurred whether beetles were added to naturally occurring shrubs or to reproductive fragments, suggesting fitness effects of top predators through three trophic levels. A correlational study showed that trophic effects of top predators also cascaded to nearby conspecifics in the forest understory. We use trends from understory plant surveys to suggest mechanisms by which these cascades could ultimately affect species diversity in the local plant community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21818 | PMC |
http://dx.doi.org/10.1073/pnas.96.9.5072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!