Stereoselective neuroprotection by novel 2,3-benzodiazepine non-competitive AMPA antagonist against non-NMDA receptor-mediated excitotoxicity in primary rat hippocampal cultures.

Neurosci Lett

Lilly Neuroscience, Lilly Research Laboratories, A Division of Eli Lilly and Co., Indianapolis, IN 46285, USA.

Published: March 1999

AI Article Synopsis

Article Abstract

Glutamate excitotoxicity has been implicated in a variety of acute and chronic neurodegenerative diseases but early phase clinical trials with competitive antagonists at both N-methyl-D-aspartate (NMDA)-receptors and alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptors have been disappointing. A family of atypical 2,3 benzodiazepines, exemplified by GYKI 52466, have been described recently which function as non-competitive AMPA-receptor antagonists. We have investigated the neuroprotective efficacy of LY303070 and LY300164, two analogs of GYKI-52466, in an embryonic rat hippocampal culture model of non-NMDA receptor-mediated excitotoxicity using kainic acid (KA) as an agonist at the AMPA/KA receptor. Overnight treatment with 500 microM KA resulted in prominent neuronal excitotoxicity as assessed by lactate dehydrogenase efflux. LY300164 and LY303070 attenuated KA-excitotoxicity in a dose-dependent manner with IC50s of 4 and 2 microM, respectively. In contrast, their stereoisomers, LY300165 and LY303071 showed no neuroprotection at concentrations up to 25 microM. In addition, AMPA-mediated excitotoxicity in cyclothiazide pre-treated cultures was also completely blocked by LY303070. Finally, neuroprotection by this class of 2,3 benzodiazepines was not influenced by antagonism of the classical benzodiazepine receptor. LY303070 and LY300164 represent novel non-competitive AMPA-receptor antagonists which may offer unique advantages in the clinic over competitive AMPA-receptor antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(99)00084-1DOI Listing

Publication Analysis

Top Keywords

ampa-receptor antagonists
12
non-nmda receptor-mediated
8
receptor-mediated excitotoxicity
8
rat hippocampal
8
non-competitive ampa-receptor
8
ly303070 ly300164
8
excitotoxicity
5
stereoselective neuroprotection
4
neuroprotection novel
4
novel 23-benzodiazepine
4

Similar Publications

Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.

View Article and Find Full Text PDF

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!