The PII protein is encoded by a unique glnB gene in Synechococcus sp. strain PCC 7942. Its expression has been analyzed in the wild type and in NtcA-null mutant cells grown under different conditions of nitrogen and carbon supply. RNA-DNA hybridization experiments revealed the presence of one transcript species 680 nucleotides long, whatever the nutrient conditions tested. A second transcript species, 620 nucleotides long, absent in the NtcA null mutant, was observed in wild-type cells that were nitrogen starved for 2 h under both high and low CO2 and in the presence of nitrate under a high CO2 concentration. Primer extension analysis indicated that the two transcript species are generated from two tandem promoters, a sigma70 Escherichia coli-type promoter and an NtcA-dependent promoter, located 120 and 53 nucleotides, respectively, from the glnB initiation codon. The NtcA-dependent promoter is up-regulated under the conditions mentioned above, while the sigma70 E. coli-type promoter displays constitutive levels of transcripts in the NtcA null mutant and slightly different levels in the wild-type cells, depending on the nitrogen and carbon supplies. In general, a good correlation between the amounts of the two transcript species and that of the PII protein was observed, as revealed by immunodetection with specific antibodies. The phosphorylation level of PII in the wild type is inversely correlated with nitrogen availability and directly correlated with higher CO2 concentration. This regulation is correspondingly less stringent in the NtcA null mutant cells. In contrast, the dephosphorylation of PII is NtcA independent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93707PMC
http://dx.doi.org/10.1128/JB.181.9.2697-2702.1999DOI Listing

Publication Analysis

Top Keywords

transcript species
16
nitrogen carbon
12
ntca null
12
null mutant
12
phosphorylation level
8
carbon supplies
8
synechococcus strain
8
strain pcc
8
pcc 7942
8
pii protein
8

Similar Publications

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

Osteosarcoma is a common malignant tumor found in adolescents, characterized by a high metastatic potential and poor prognosis, but it is sensitive to radiotherapy and chemotherapy. Ferroptosis is a novel form of regulated cell death induced by excessive iron accumulation, leading to lipid peroxidation that results in cellular dysfunction and death. Naringenin is a flavonoid known for its anti-cancer properties, yet its role in osteosarcoma has not been thoroughly studied.

View Article and Find Full Text PDF

RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis.

View Article and Find Full Text PDF

NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells.

Mol Plant

January 2025

Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:

The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.

View Article and Find Full Text PDF

Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.

Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!