Yeast cells respond to a shift to higher osmolarity by increasing the cellular content of the osmolyte glycerol. This response is accompanied by a stimulation of the expression of genes encoding enzymes in the glycerol production pathway. In this study the osmotic induction of one of those genes, GPD1, which encodes glycerol-3-phosphate dehydrogenase, was monitored in time course experiments. The response is independent of the osmolyte and consists of four apparent phases: a lag phase, an initial induction phase, a feedback phase and a sustained long-term induction. Osmotic shock with progressively higher osmolyte concentrations caused a prolonged lag phase. Deletion of HOG1, which encodes the terminal protein kinase of the high osmolarity glycerol (HOG) response pathway, led to an even longer lag phase and drastically lower basal and induced GPD1 mRNA levels. However, the induction was only moderately diminished. Overstimulation of Hog1p by deletion of the genes for the protein phosphatases PTP2 and PTP3 led to higher basal and induced mRNA levels and a shorter lag phase. The protein phosphatase calcineurin, which mediates salt-induced expression of some genes, does not appear to contribute to the control of GPD1 expression. Although GPD1 expression has so far not been reported to be controlled by a general stress response mechanism, heat-shock induction of the GPD1 mRNA level was observed. However, unregulated protein kinase A activity, which strongly affects the general stress response, only marginally altered the mRNA level of GPD1. The osmotic stimulation of GPD1 expression does not seem to be mediated by derepression, since deletion of the SSN6 gene, which encodes a general repressor, did not significantly alter the induction profile. A hypoosmotic shock led to a transient 10-fold drop of the GPD1 mRNA level. Neither the HOG nor the protein kinase C pathway, which is stimulated by a decrease in external osmolarity, is involved in this effect. It was concluded that osmotic regulation of GPD1 expression is the result of an interplay between different signalling pathways, some of which remain to be identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/13500872-145-3-715 | DOI Listing |
J Bioenerg Biomembr
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure.
View Article and Find Full Text PDFBiomed J
January 2025
ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina. Electronic address:
The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
Chaos
January 2025
Department of Physics, Tohoku University, Sendai 980-8578, Japan.
An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!