Quantitative analysis of histone H1 degrees protein synthesis in HTC cells.

Eur J Biochem

Laboratoire de Biologie Moléculaire des Cellules Eucaryotes, ICGM-EA 1501, Université Paris V, Port-Royal, France.

Published: May 1999

H1 degrees, a member of histone H1 family associated with cell growth arrest and differentiation, is barely expressed in most mammalian cells in culture. Depending on the cell type, serum deprivation or drugs, such as sodium butyrate, significantly increase H1 degrees mRNA level and H1 degrees protein accumulates. However, probably because of a lack of a simple quantitative procedure, little is known about the relationship between H1 degrees mRNA content and its effective translation rate. Using a rat hepatoma cell line and sodium butyrate as a model system, we attempted to evaluate this in different cellular conditions by measuring H1 degrees synthesis with a rapid quantitative procedure we described previously. We found that although the amount of H1 degrees mRNA rapidly increased and then stabilized under sodium butyrate treatment, its transcription was delayed and H1 degrees protein was synthesized in a progressive wave. Butyrate removal from cell culture confirmed that mRNA level and protein synthesis were independently regulated, and provided evidence that sodium butyrate would not directly target the translation apparatus. In contrast, during the S phase of the cell cycle, H1 degrees gene transcription and protein synthesis were concomitantly activated. Taken together these data provide evidence that H1 degrees accumulation results from an increase of its synthesis and that, depending on conditions, a cell exhibits a H1 degrees translation efficiency which may or may not reflect the mRNA level.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.1999.00331.xDOI Listing

Publication Analysis

Top Keywords

sodium butyrate
16
degrees protein
12
protein synthesis
12
degrees mrna
12
mrna level
12
degrees
11
quantitative procedure
8
cell
6
protein
5
synthesis
5

Similar Publications

The occurrence of off-flavor in osmanthus absolutes has emerged as a significant concern that could hinder its broad market acceptance and associated economic development. In this study, key off-flavor molecules in industrial osmanthus absolute were identified through sensomics and chemometric approaches. A group of 10 off-flavor (OF) samples, eliciting smoky/phenolic, sweaty/sour, and spicy odors, were compared with 10 pleasant aroma (PA) samples through various analyses, including overall aroma assessment, comprehensive chemical profiling, aroma extract dilution analysis (AEDA), and orthogonal partial least-squares-discriminant analysis (OPLS-DA).

View Article and Find Full Text PDF

Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites.

Food Funct

January 2025

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.

Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.

View Article and Find Full Text PDF

Introduction: The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system.

Aim: To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs).

Methods: A PubMed search was conducted to retrieve the original and articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!