RGS9, a member of the family of regulators of G protein signaling (RGS), serves as a GTPase-activating protein (GAP) for the transducin alpha-subunit (Gtalpha) in the vertebrate visual transduction cascade. The GAP activity of RGS9 is uniquely potentiated by the gamma-subunit of the effector enzyme, cGMP-phosphodiesterase (Pgamma). In contrast, Pgamma attenuates the GAP effects of several other RGS proteins, including RGS16. We demonstrate here that the Pgamma subunit exerts its effects on the GTPase activity of the Gtalpha-RGS complex via the C-terminal domain, Pgamma-63-87. The structural determinants that control the direction of Pgamma effects on the RGS-Gtalpha system are localized within the RGS domains. The addition of Pgamma caused an increase in the maximal stimulation of Gtalpha GTPase activity by RGS9d without affecting the EC50 value. Modulation of Gtalpha GTPase activity by chimeric RGS16 and RGS9 proteins and Pgamma has been investigated. This analysis suggests that in addition to the differences in primary structures, the overall conformations of the RGS fold in RGS9 and RGS16 are likely to be responsible for the opposite effects of Pgamma on the RGS9 and RGS16 GAP activity. The RGS9 alpha3-alpha5 region constituted the minimal insertion of the RGS9 domain into RGS16 that reversed the inhibitory effect of Pgamma. A model of the RGS9 complex with Gtalpha shows the alpha3-alpha5 helices in RGS9 facing the proximate Pgamma binding site on Gtalpha. Our results and this model demonstrate that the mechanism of potentiation of RGS9 GAP activity by Pgamma involves a more rigid stabilization of the Gtalpha switch regions when Gtalpha is bound to both RGS9 and Pgamma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi982636x | DOI Listing |
Cell Death Dis
January 2025
CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!