Purpose: The in vitro and in situ transport of CGP 65015 ((+)-3-hydroxy-1-(2-hydroxyethyl)-2-hydroxyphenyl-methyl-1H-pyridin-4-on e), a novel oral iron chelator, is described. The predictive power of these data in assessing intestinal absorption in man is described.
Methods: Caco-2 epithelial monolayer and in situ rat jejunum perfusion intestinal permeability models were utilized. In vivo iron excretion and preliminary animal pharmacokinetic experiments were described. Ionization constants and octanol/aqueous partition coefficients were measured potentiometrically. Solubilities and intrinsic dissolution rates were determined using standard procedures.
Results: Caco-2 cell (Papp approximately 0.25 x 10(-6) cm x s(-1)) and rat jejunum (Pw approximately 0.4) permeabilities of CGP 65015 were determined. The log D(pH 7.4) of CGP 65015 was 0.58 and its aqueous solubility was < 0.5 mg x ml(-1) (pH 3-9). The intrinsic dissolution rate of CGP 65015 in USP simulated intestinal fluid was 0.012 mg x min(-1) x cm(-2). CGP 65015 promotes iron excretion effectively and dose dependently in animals.
Conclusions: Caco-2 and rat intestinal permeabilities predict incomplete oral absorption of CGP 65015 in man. Preliminary rat pharmacokinetics support this. Physico-chemical data are, also, in line and suggest that CGP 65015 may, in addition, be solubility/dissolution rate limited in vivo. Nevertheless, early animal pharmacological data demonstrate that CGP 65015 is a viable oral iron chelator candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1018886005136 | DOI Listing |
Br J Haematol
September 2000
Novartis Pharma AG, Basle, Switzerland.
In order to test new orally active iron chelators in a predictive way, a primate model has been developed. This model makes use of the marmoset monkey (Callithrix jacchus) and its overall design is similar to a previously reported monkey model. However, this new model enables a higher compound throughput and requires lower amounts of test compound because the animals are much easier to handle and have much lower body weights.
View Article and Find Full Text PDFPharm Res
March 1999
Pharmaceutical and Analytical Development, Novartis Horsham Research Centre, West Sussex, United Kingdom.
Purpose: The in vitro and in situ transport of CGP 65015 ((+)-3-hydroxy-1-(2-hydroxyethyl)-2-hydroxyphenyl-methyl-1H-pyridin-4-on e), a novel oral iron chelator, is described. The predictive power of these data in assessing intestinal absorption in man is described.
Methods: Caco-2 epithelial monolayer and in situ rat jejunum perfusion intestinal permeability models were utilized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!