The use of biological materials in the construction of bioprostheses requires the application of different chemical or physical procedures to improve the mechanical performance of the material without producing any undesirable effects. A number of cross-linking methods have been tested in biological tissues composed mainly of collagen. The basis for most of them is the use of glutaraldehyde (GA), which acts on the Lys or Hyl residues. We have studied the effects of alternative chemical treatments: diphenylphosphorylazide (DPPA) and ethyldimethylaminopropyl carbodiimide (EDAC). Their mechanism of action is based on the activation of the carboxyl groups, which then permits their cross-linking to amino groups. As a control, we employed conventional treatment with GA, applying it to bovine pericardium and collagen membranes removed from bovine pericardium. The analysis of the Lys and Hyl residues showed that DPPA and EDAC produced 50% of the chemical change provoked by GA. This value was even lower in the trials with collagen. In terms of the resistance to collagenase degradation, chemical cross-linking with GA provided much greater protection in both materials (3.81 +/- 3.47 nmol of amino acid/mg dry tissue for pericardium and 4.41 +/- 1.13 nmol of amino acid/mg dry tissue for collagen). Treatment with DPPA also protected pericardium (13.11 +/- 6.57 nmol amino acid/mg dry tissue) although the values for collagen was lower (50.0 +/- 32.4 nmol amino acid/mg dry tissue). Treatment with EDAC was much less protective than the other two chemical reagents (43.28 +/- 17.4 and 55.85 +/- 14.57 nmol amino acid/mg dry tissue for pericardium and collagen, respectively). The degree of tissue calcification after implantation of the chemically treated materials into young rats was considerably greater for GA and DPPA (32.9 +/- 18.8 and 36.3 +/- 13.3 mg g(-1) dry tissue, respectively) than with EDAC (18.0 +/- 7.2 mg g(-1) dry tissue; P < 0.001). After 60 days of implantation, the values for GA and EDAC were higher(124.1 +/- 31.3 and 124.6 +/- 21.0 mg g(-1) dry tissue, respectively) versus 34.6 +/- 19.2 mg g(-1) dry tissue for DPPA. There were no significant differences in collagen levels in samples treated with GA or EDAC after 30 days of implantation, although both groups showed significant differences when compared with DPPA-treated samples (P < 0.001). After 60 days of implantation, there were no significant differences among these three treatments in terms of the calcium accumulated on samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(98)90205-8DOI Listing

Publication Analysis

Top Keywords

dry tissue
36
nmol amino
20
amino acid/mg
20
acid/mg dry
20
g-1 dry
16
bovine pericardium
12
pericardium collagen
12
+/-
12
days implantation
12
tissue
10

Similar Publications

AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury.

Biomed Pharmacother

January 2025

Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Electronic address:

Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role.

View Article and Find Full Text PDF

A Novel Rabbit Model of Meibomian Gland Dysfunction-Induced Dry Eye.

Transl Vis Sci Technol

January 2025

Johnson & Johnson Vision Care, Inc., Jacksonville, FL, USA.

Purpose: The objective of this three-phase study was to develop a model of mild to moderate evaporative dry eye to be used to evaluate tear film stability endpoints during product development.

Methods: Rabbits were sedated prior to ophthalmic cautery of meibomian gland orifices. The orifices of eyelid meibomian glands were half-cauterized (to yield obstruction of every other meibomian gland orifices), fully cauterized (to yield obstruction of all meibomian gland orifices), or untreated.

View Article and Find Full Text PDF

Background: Breast cancer is one of the most common cancers among Pakistani women. It is mostly diagnosed at stage 2, requiring chemotherapy in certain cases. Chemotherapy is of two types: adjuvant and neoadjuvant.

View Article and Find Full Text PDF

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Offspring of adult Yellowstone cutthroat trout (YCT) exposed to a range of selenium (Se) concentrations in situ were reared in a laboratory setting to assess effects on survival, growth and abnormalities. Maternal whole body Se concentrations ranged from 2.6 to 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!