Interleukin-5 (IL-5), expressed primarily by type-2 T helper (Th2) cells, plays an important role in the development of allergic diseases, such as allergic asthma. Studying the regulation of IL-5 gene expression by Ets transcription factors, we found that Ets1 and Ets2, but not Elf-1, were able to activate the human IL-5 promoter in Jurkat T-cells. This required the presence of either phorbol 12-myristate acetate (PMA) plus ionomycin or PMA plus the viral protein HTLV-I Tax1. By mutation studies, it could be shown that Ets1 and Ets2 exerted their effects on the IL-5 promoter through a GGAA motif within the Cle0 element. In myeloid Kasumi cells, Ets1 and Ets2 failed to stimulate IL-5 promoter activity, unless the T-cell specific transcription factor GATA3 was added. These results show, for the first time, that Ets1 and Ets2 are able to cooperate with GATA3. Both ionomycin and Tax1 increased the combined effect of GATA3 with Ets1 and Ets2 in the presence of PMA. The data further demonstrate that, in addition to Ets1, Ets2 is also able to functionally cooperate with Tax1. The synergism of GATA3 with either Ets1 or Ets2 may play an important role in calcium- or Tax1-dependent regulation of IL-5 expression in Th2 cells or in HTLV-I transformed adult T-cell leukemia cells, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.18.12910DOI Listing

Publication Analysis

Top Keywords

ets1 ets2
32
il-5 promoter
12
ets transcription
8
transcription factors
8
ets1
8
factors ets1
8
ets2
8
ets2 elf-1
8
cooperate gata3
8
htlv-i tax1
8

Similar Publications

Recent studies have shown that cellular senescence is involved in the pathogenesis of severe asthma (SA). The objective of this study was to investigate the role of cellular senescence-related genes (CSGs) in the pathogenesis of SA. Here, 54 differentially expressed CSGs were identified in SA patients compared to healthy control individuals.

View Article and Find Full Text PDF

Elucidating the molecular mechanisms of sepsis: Identifying key aging-related biomarkers and potential therapeutic targets in the treatment of sepsis.

Environ Toxicol

June 2024

Department of Rheumatology and Immunology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Sepsis remains a crucial global health issue characterized by high mortality rates and a lack of specific treatments. This study aimed to elucidate the molecular mechanisms underlying sepsis and to identify potential therapeutic targets and compounds.

Methods: High-throughput sequencing data from the GEO database (GSE26440 as the training set and GSE13904 and GSE32707 as the validation sets), weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, alongside a combination of PPI and machine learning methods (LASSO and SVM) were utilized.

View Article and Find Full Text PDF

The outcome of the disease visceral leishmaniasis (VL), caused by Leishmania donovani (LD), largely relies on the relative dominance of host-protective type-1 T helper (Th1) cell response versus disease-promoting type-2 T helper (Th2) cell response. The Th1 and Th2 responses, in turn, are believed to be elicited by type-1 conventional dendritic cells (cDC1) and type-2 conventional DCs (cDC2), respectively. However, it is still unknown which DC subtype (cDC1 or cDC2) predominates during chronic LD infection and the molecular mechanism governing such occurrence.

View Article and Find Full Text PDF

Objective: ETS1 and ETS2, the main ETS family of transcription factors, have been found to act as downstream effectors of the RAS/MAPK pathway. This study explores the expression and prognostic values of ETS1 and ETS2 across cancers. We also aimed to explore the significance of ETS1 and ETS2 expression in normal immune cells with relation to tumorigenesis.

View Article and Find Full Text PDF

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor β-1 (TGF-β1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!