Rats with dorsomedial or dorsolateral caudate-putamen lesions and sham-operated controls were trained on the standard hidden platform (place) task in the water maze. Compared to controls, rats with dorsomedial, but not dorsolateral lesions were slower to escape to the hidden platform and spent significantly more time swimming near the wall of the pool (thigmotaxis) on the early trials, but eventually achieved control levels of performance. When the platform was removed from the pool, all groups exhibited a significant bias for swimming in the training quadrant and crossing the former location of the platform. In the second phase of the experiment rats were given visible platform (cue) training in a different room/pool with the platform moved to a new location each day. Rats with dorsomedial, but not dorsolateral lesions required more trials to reach criterion; again, thigmotaxis was observed on the early trials. The third phase, carried out in the original room/pool, included a place-retention trial followed by a place-cue competition test, (i.e. a choice between the learned spatial location of the hidden platform and the visible platform in a new location). The rats with dorsomedial, but not dorsolateral lesions swam to the visible platform more frequently than the controls. In the final phase, the rats in both lesion groups exhibited slightly lower thigmotactic tendencies than controls in a standard dry-land open field, a finding inconsistent with the hypothesis that thigmotaxis in the water maze is due to increased fear or anxiety. Taken together with other behavioral and anatomical findings, the results suggest that the dorsomedial caudate-putamen, by virtue of its connections with limbic and prefrontal cortical regions, may mediate a response selection process that integrates cognitive information with stimulus-response tendencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-4328(98)00107-7 | DOI Listing |
Front Physiol
December 2024
Biomedical Science Department, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.
Myocardial ischemia causes the production and release of metabolites such as bradykinin, which stimulates cardiac spinal sensory afferents, causing chest pain and an increase in sympathetic activity referred to as the cardiogenic sympathetic afferent reflex. While the brain stem nuclei, such as the nucleus tractus solitarius and rostral ventrolateral medulla, are essential in the cardiogenic sympathetic afferent reflex, the role of other supramedullary nuclei in the cardiogenic sympathetic afferent reflex are not clear. The dorsomedial hypothalamic nucleus (DMH) is involved in cardiovascular sympathetic regulation and plays an important role in the sympathetic response to stressful stimuli.
View Article and Find Full Text PDFeNeuro
January 2025
Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201.
Cannabinoid receptor-1 (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum (DMS) CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA).
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA; Department of Biomedical and Neuromotor Science, University of Bologna, Bologna 40126, Italy. Electronic address:
To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway.
View Article and Find Full Text PDFChronobiol Int
December 2024
Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan.
J Integr Neurosci
November 2024
Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
Background: The goal of these experiments was to determine which learning and memory system(s) were necessary for the retention of visual discriminations and subsequent acquisition of a second problem. The dorsal striatum should be involved in the acquisition and expression of this task based on previous work implicating this region in instrumental learning and memory processes. The perirhinal cortex has been implicated in learning and memory processes associated with visual information like objects, and pictures and may also play a role in the acquisition and/or retention of visual discriminations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!