Ultrasonic contrast agents are used to enhance backscatter from blood and thus aid in delineating blood from surrounding tissue. However, behaviour of contrast agents in an acoustic field is nonlinear and leads to harmonic components in the backscattered signal. Various research groups have investigated second-harmonic emissions. In this work, the subharmonic emission from contrast agents is investigated with a view towards potential use in imaging. It is shown that the microbubbles with various surface properties, such as contrast agents, generate significant subharmonics under various insonating conditions. Theoretical results as well as experimental results using Optison indicate the generation of strong subharmonics with burst insonation at twice the resonant frequency of the microbubble. It is suggested that subharmonic imaging may provide a better modality than second-harmonic imaging to delineate blood from tissue and will be of significant importance for imaging deep vessels, such as in echocardiography and vascular diseases, due to the high signal-to-clutter ratio of the subharmonic imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/44/3/004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!