The cell wall of yeast contains a major structural unit, consisting of a cell wall protein (CWP) attached via a glycosylphosphatidylinositol (GPI)-derived structure to beta 1,6-glucan, which is linked in turn to beta 1, 3-glucan. When isolated cells walls were digested with beta 1,6-glucanase, 16% of all CWPs remained insoluble, suggesting an alternative linkage between CWPs and structural cell wall components that does not involve beta 1,6-glucan. The beta 1,6-glucanase-resistant protein fraction contained the recently identified GPI-lacking, O-glycosylated Pir-CWPs, including Pir2p/Hsp150. Evidence is presented that Pir2p/Hsp150 is attached to beta 1,3-glucan through an alkali-sensitive linkage, without beta 1,6-glucan as an interconnecting moiety. In beta 1,6-glucan-deficient mutants, the beta 1,6-glucanase-resistant protein fraction increased from 16% to over 80%. This was accompanied by increased incorporation of Pir2p/Hsp150. It is argued that this is part of a more general compensatory mechanism in response to cell wall weakening caused by low levels of beta 1,6-glucan.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1999.01320.xDOI Listing

Publication Analysis

Top Keywords

cell wall
20
beta 16-glucan
16
beta
11
beta 16-glucan-deficient
8
16-glucan-deficient mutants
8
beta 16-glucanase-resistant
8
16-glucanase-resistant protein
8
protein fraction
8
cell
5
wall
5

Similar Publications

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Plasmodesmata are cell-wall-embedded channels that evolved in the common ancestor of land plants to increase cell-to-cell communication. Whether all the fundamental properties of plasmodesmata emerged and were inherited in all land plants at the same time is unknown. Here we show that the bryophyte Marchantia polymorpha (a non-vascular plant) forms mostly simple plasmodesmata in early-developing gemmae.

View Article and Find Full Text PDF

A male in his seventies presented with lung cancer in the right lower lobe. The surgically resected specimen revealed a pleomorphic carcinoma featuring an adenocarcinoma component with lepidic, acinar, and papillary patterns, alongside a spindle cell component spreading along the pulmonary artery wall, resembling intimal sarcoma. The spindle tumor cells were positive for keratins, TTF-1, napsin A, and vimentin, but negative for p40, CK14, desmin, alpha-smooth muscle actin, CDK4, and MDM2.

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!