The effect of metal ions at a concentration of 10(-8) to 10(-5) M [using their salts: ZnCl2, CdCl2, LiCl, CuSO4, NiSO4, Al2(SO4)3, (NH4)2MoO4 on the lactoferrin (Lf) binding to the erythrocyte membrane receptors was studied. In the absence of metal ions, Scatchard's analysis showed the existence of two kinds of binding site: one with high affinity and low capacity, and the another with low affinity and high capacity. All these metals, excluding Zn2+ and Cd2+, at a concentration 10(-5) M decreased the affinity of Lf binding (Ka1) to the high-affinity receptors. In the presence of Zn2+ and Cd2+, only the low-affinity binding site was found. Significant inhibition on the affinity (Ka2) of the low-affinity class of receptors showed Zn2+, Al3+, and Mo6+. Depending on their concentration (10(-8)-10(-5) M), these ions enhanced to a different extent, the binding capacity of the both types receptors, but the effect did not correspond to the applied doses. Several explanations of the mechanism for influence of the metal ions on the Lf-receptor interaction is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02784393 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFChem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFThe detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.
View Article and Find Full Text PDFChemSusChem
January 2025
Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.
Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.
View Article and Find Full Text PDFCommun Chem
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!