This prospective study reports serum hormone measurements associated with menopause in fragile X carriers (n = 9, age between 31-40 years). These results demonstrate the occurrence of premature ovarian failure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-8628(19990402)83:4<327::aid-ajmg19>3.0.co;2-rDOI Listing

Publication Analysis

Top Keywords

fragile carriers
8
menstrual disorders
4
disorders endocrine
4
endocrine profiles
4
profiles fragile
4
carriers prior
4
prior years
4
years age
4
age pilot
4
pilot study
4

Similar Publications

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Autism is clinically defined by challenges with social language, including difficulties offering on-topic language in a conversation. Similar differences are also seen in genetically related conditions such as fragile X syndrome (FXS), and even among those carrying autism-related genes who do not have clinical diagnoses (e.g.

View Article and Find Full Text PDF

Offering reproductive genetic carrier screening for cystic fibrosis, spinal muscular atrophy and fragile X syndrome: Views of Victorian general practitioners.

Aust J Gen Pract

December 2024

PhD, GDipGenetCouns, Honorary Principal Fellow, Department of Paediatrics, University of Melbourne, Melbourne, Vic; Associate Professor, Head of Service Development, Reproductive Genetics and Group Leader @ Reproductive Genetic Counselling, Victorian Clinical Genetics Services, Murdoch Children@s Research Institute, Melbourne, Vic

Background And Objectives: The Royal Australian College of General Practice recommends that all women contemplating pregnancy or in early pregnancy should be offered reproductive genetic carrier screening (RGCS). In November 2023, a new Medicare item number was introduced for RGCS to detect cystic fibrosis (CF), spinal muscular atrophy (SMA) and fragile X syndrome (FXS) carrier status. The role of general practice in offering RGCS is recognised as being of crucial importance, but only a minority of general practitioners (GPs) are offering such screening.

View Article and Find Full Text PDF

Genetic study on candidates for oocyte donation.

JBRA Assist Reprod

December 2024

Genetics Unit, Department of Pathology, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.

Objective: There is a rising demand for assisted reproductive medicine, including sperm, oocyte and embryo donation. Besides medical and legal considerations, genetic testing, including carrier screening for multiple autosomal and X-linked recessive disorders plays an essential role in evaluating hereditary risk among donors and therefore exclude them from the donation process.

Methods: A retrospective study was conducted on oocyte donors from a private clinic of assisted reproduction who underwent genetic testing between June 2014 and September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!