Acid and base regulation in the proteome of Escherichia coli.

Novartis Found Symp

Department of Biology, Kenyon College, Gambier, OH 43022, USA.

Published: June 1999

Acid and base conditions have many significant effects on the growth of Escherichia coli. External and internal pH perturbations induce different classes of genes. pH-dependent regulation of genes intersects with other regulatory responses, e.g. oxygen level or osmolarity. 2D electrophoretic gels were used to compare global patterns of protein induction in Escherichia coli grown in complex media buffered at the acid or alkaline ends of the pH range for growth (pH 4.4 vs. pH 9.1). Preliminary results indicate new classes of acid- and base-dependent regulation, in some cases highly dependent on oxygen level. Other proteins are induced strongly at both extremes of pH, compared to pH 7. Current work continues to dissect the relationship between effects of pH, oxygen level and osmolarity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/9780470515631.ch6DOI Listing

Publication Analysis

Top Keywords

escherichia coli
12
oxygen level
12
acid base
8
level osmolarity
8
base regulation
4
regulation proteome
4
proteome escherichia
4
coli acid
4
base conditions
4
conditions effects
4

Similar Publications

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

South American camelids (SACs), particularly llamas (Lama glama) and alpacas (Vicugna pacos) are gaining popularity in Europe. Initially valued for their fiber and land management capabilities, these animals are now also kept for animal therapy, outdoor activities, and as companion animals. Despite their close interactions with humans and other animals, there is limited research on the transmission of microbes or antimicrobial resistance genes from SACs.

View Article and Find Full Text PDF

Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.

View Article and Find Full Text PDF

Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Antimicrobial Resistance Profiles of Isolated from Food Animal Carcasses During 2010-2023 in South Korea.

Foodborne Pathog Dis

January 2025

Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea.

Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 isolates obtained from cattle ( = 1582), pigs ( = 1572), and chickens ( = 1594) were assessed for susceptibility to 12 antimicrobials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!